Ma Jingwei, Yang Yang, Zang Caixia, Chen Qiuzhu, Jiang Yueqi, Dong Yirong, Wang Jinrong, Zhou Ning, Yang Xing, Li Fangfang, Bao Xiuqi, Zhang Dan
State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
Exp Neurol. 2025 Sep;391:115288. doi: 10.1016/j.expneurol.2025.115288. Epub 2025 May 2.
Mitochondrial excessive fission is one of representative pathological features and a principal element triggering the neuronal damage in Parkinson's disease (PD). Inhibiting mitochondrial excessive fission benefits the pathology of PD through promoting mitochondrial biogenesis, but the detailed mechanism has not been clarified. In our study, we revealed that inhibiting mitochondrial excessive fission by Mdivi-1, the dynamin related protein 1 (DRP1) inhibitor, increased the expression and nuclear translocation of peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC-1α), as well as its downstream transcriptional factors, nuclear respiratory factor 1/2 (NRF1/2) and mitochondrial transcription factor A (TFAM), and therefore promoted mitochondrial biogenesis. Suppression of mitochondrial excessive fission alleviated dopaminergic synaptic injury, neuronal apoptosis and motor dysfunction, while inhibiting PGC-1α attenuated these ameliorative effects in both in-vitro and in-vivo PD models. Mechanistic study showed that inhibiting mitochondrial excessive fission facilitated the expression of PGC-1α, NRF1 and TFAM by activation of Ca/calmodulin-dependent serine/threonine kinase II (CaMKII)/cAMP-response element binding protein (CREB) pathway. Inhibiting mitochondrial excessive fission also activated AMP-activated serine/threonine kinase (AMPK)/Sirtuin1 (Sirt1) pathway, and then phosphorylated and deacetylated PGC-1α by post-translational modifications. In conclusion, inhibiting mitochondrial excessive fission could promote mitochondrial biogenesis through activation of PGC-1α and therefore rescue the impaired dopaminergic neurons, which provided evidence for targeting mitochondrial excessive fission for the treatment of PD and new drug developments.
线粒体过度裂变是帕金森病(PD)的典型病理特征之一,也是引发神经元损伤的主要因素。抑制线粒体过度裂变可通过促进线粒体生物发生来改善PD的病理状况,但其具体机制尚未阐明。在我们的研究中,我们发现,使用动力相关蛋白1(DRP1)抑制剂Mdivi-1抑制线粒体过度裂变,可增加过氧化物酶体增殖物激活受体γ(PPARγ)共激活因子1α(PGC-1α)及其下游转录因子核呼吸因子1/2(NRF1/2)和线粒体转录因子A(TFAM)的表达及核转位,从而促进线粒体生物发生。在体外和体内PD模型中,抑制线粒体过度裂变可减轻多巴胺能突触损伤、神经元凋亡和运动功能障碍,而抑制PGC-1α则会减弱这些改善作用。机制研究表明,抑制线粒体过度裂变通过激活钙/钙调蛋白依赖性丝氨酸/苏氨酸激酶II(CaMKII)/环磷酸腺苷反应元件结合蛋白(CREB)通路促进PGC-1α、NRF1和TFAM的表达。抑制线粒体过度裂变还激活了AMP激活的丝氨酸/苏氨酸激酶(AMPK)/沉默调节蛋白1(Sirt1)通路,随后通过翻译后修饰使PGC-1α磷酸化并去乙酰化。总之,抑制线粒体过度裂变可通过激活PGC-1α促进线粒体生物发生,从而挽救受损的多巴胺能神经元,这为针对线粒体过度裂变治疗PD及新药研发提供了依据。