Suppr超能文献

使用特斯拉阀通过流态切换形成纳米气泡

Nanobubble Formation by Flow Regime Switching Using a Tesla Valve.

作者信息

Joseph George, Binny Bincy, Venter Andre R

机构信息

Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States.

出版信息

ACS Omega. 2025 Apr 14;10(16):16230-16235. doi: 10.1021/acsomega.4c10246. eCollection 2025 Apr 29.

Abstract

Nanobubbles (NBs) are very small gas cavities in solution, and when their sizes reach diameters around 200 nm, they exhibit special qualities with widespread application. We introduce a novel, cost-effective method for the generation of nanobubbles by flow regime cycling through a Tesla valve, a valvular condiut without moving parts. We compare the performance of Tesla valve flow regime cycling with other previously reported methods for laboratory-scale NB generation. NBs were created from CO or N and by flow regime swiching using the Tesla valve, ultrasonication, and pressure cycling. The comparison includes bubble diameter, bubble concentration, and zeta potential under individually optimized conditions. The average bubble diameter generated by the Tesla valve from CO was measured at 110 nm by NTA, which is similar to sonication but small compared to the bubbles produced by the pressure cycling method (140 nm). Additionally, the average concentration of bubbles created by the Tesla valve was 3.8 × 10 bubbles/mL, more than sonication at 3.0 × 10 bubbles/mL but fewer than pressure cycling at 2.6 × 10 bubbles/mL. The surface charge was recorded at -33 mV, just below sonication at -36 mV but larger than pressure cycling at -21 mV. The results indicate that flow cycling through a Tesla valve generates NBs in the 100-200 nm range, which compares favorably to the alternative laboratory-scale methods while promising low energy consumption and easy scalability for future industrial applications.

摘要

纳米气泡(NBs)是溶液中非常小的气体空腔,当它们的尺寸达到直径约200纳米时,会表现出具有广泛应用的特殊性质。我们介绍了一种新颖、经济高效的通过特斯拉阀(一种无活动部件的阀门管道)进行流态循环来产生纳米气泡的方法。我们将特斯拉阀流态循环的性能与其他先前报道的实验室规模产生纳米气泡的方法进行了比较。纳米气泡由一氧化碳或氮气产生,并通过使用特斯拉阀、超声处理和压力循环的流态切换来生成。比较内容包括在各自优化条件下的气泡直径、气泡浓度和zeta电位。通过纳米颗粒跟踪分析(NTA)测得,由特斯拉阀从一氧化碳产生的平均气泡直径为110纳米,这与超声处理相似,但与压力循环法产生的气泡(140纳米)相比要小。此外,由特斯拉阀产生的气泡平均浓度为3.8×10个气泡/毫升,比超声处理的3.0×10个气泡/毫升多,但比压力循环的2.6×10个气泡/毫升少。表面电荷记录为-33毫伏,略低于超声处理的-36毫伏,但大于压力循环的-21毫伏。结果表明,通过特斯拉阀的流态循环产生的纳米气泡尺寸在100 - 200纳米范围内,与其他实验室规模的方法相比具有优势,同时有望在未来工业应用中实现低能耗和易于扩展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea8c/12044576/efdff95ae67b/ao4c10246_0001.jpg

相似文献

1
Nanobubble Formation by Flow Regime Switching Using a Tesla Valve.
ACS Omega. 2025 Apr 14;10(16):16230-16235. doi: 10.1021/acsomega.4c10246. eCollection 2025 Apr 29.
2
The Role of Nanobubbles in Protein Unfolding during Electrothermal Supercharging.
J Am Soc Mass Spectrom. 2025 Apr 2;36(4):794-800. doi: 10.1021/jasms.4c00472. Epub 2025 Mar 11.
3
Effect of dissolved-gas concentration on bulk nanobubbles generation using ultrasonication.
Sci Rep. 2020 Nov 2;10(1):18816. doi: 10.1038/s41598-020-75818-8.
4
Bulk Nanobubbles Fabricated by Repeated Compression of Microbubbles.
Langmuir. 2019 Mar 26;35(12):4238-4245. doi: 10.1021/acs.langmuir.8b04314. Epub 2019 Mar 12.
8
Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective.
Crit Rev Food Sci Nutr. 2023;63(28):9262-9281. doi: 10.1080/10408398.2022.2067119. Epub 2022 Apr 25.
9
Probing Internal Pressures and Long-Term Stability of Nanobubbles in Water.
Langmuir. 2021 Feb 23;37(7):2514-2522. doi: 10.1021/acs.langmuir.0c03574. Epub 2021 Feb 4.
10
Nanobubbles in Electrospray Ionization Mass Spectrometry.
Anal Chem. 2025 Mar 25;97(11):6034-6040. doi: 10.1021/acs.analchem.4c06040. Epub 2025 Mar 10.

本文引用的文献

1
The Role of Nanobubbles in Protein Unfolding during Electrothermal Supercharging.
J Am Soc Mass Spectrom. 2025 Apr 2;36(4):794-800. doi: 10.1021/jasms.4c00472. Epub 2025 Mar 11.
2
Nanobubbles in Electrospray Ionization Mass Spectrometry.
Anal Chem. 2025 Mar 25;97(11):6034-6040. doi: 10.1021/acs.analchem.4c06040. Epub 2025 Mar 10.
3
Understanding the Role of Surface Charge on Nanobubble Capillary Bridging during Particle-Particle Interaction.
Langmuir. 2024 Feb 27;40(8):4475-4488. doi: 10.1021/acs.langmuir.3c03963. Epub 2024 Feb 14.
4
Nanobubble size distribution measurement by interactive force apparatus under an electric field.
Sci Rep. 2023 Mar 4;13(1):3663. doi: 10.1038/s41598-023-30811-9.
5
Elucidating CO nanobubble interfacial reactivity and impacts on water chemistry.
J Colloid Interface Sci. 2022 Feb;607(Pt 1):720-728. doi: 10.1016/j.jcis.2021.09.033. Epub 2021 Sep 8.
6
The effect of ultrasound on bulk and surface nanobubbles: A review of the current status.
Ultrason Sonochem. 2021 Aug;76:105629. doi: 10.1016/j.ultsonch.2021.105629. Epub 2021 Jun 12.
7
Early turbulence and pulsatile flows enhance diodicity of Tesla's macrofluidic valve.
Nat Commun. 2021 May 17;12(1):2884. doi: 10.1038/s41467-021-23009-y.
8
How bulk nanobubbles are stable over a wide range of temperatures.
J Colloid Interface Sci. 2021 Aug 15;596:184-198. doi: 10.1016/j.jcis.2021.03.064. Epub 2021 Mar 24.
9
Metastable Nanobubbles.
ACS Omega. 2021 Mar 16;6(12):8021-8027. doi: 10.1021/acsomega.0c05384. eCollection 2021 Mar 30.
10
Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage.
J Colloid Interface Sci. 2021 Feb 15;584:449-455. doi: 10.1016/j.jcis.2020.09.100. Epub 2020 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验