Gilpin William
Department of Physics, The University of Texas at Austin, Austin, Texas, United States of America.
Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, United States of America.
PLoS Comput Biol. 2025 May 5;21(5):e1013051. doi: 10.1371/journal.pcbi.1013051. eCollection 2025 May.
Living systems operate far from equilibrium, yet few general frameworks provide global bounds on biological transients. In high-dimensional biological networks like ecosystems, long transients arise from the separate timescales of interactions within versus among subcommunities. Here, we use tools from computational complexity theory to frame equilibration in complex ecosystems as the process of solving an analogue optimization problem. We show that functional redundancies among species in an ecosystem produce difficult, ill-conditioned problems, which physically manifest as transient chaos. We find that the recent success of dimensionality reduction methods in describing ecological dynamics arises due to preconditioning, in which fast relaxation decouples from slow solving timescales. In evolutionary simulations, we show that selection for steady-state species diversity produces ill-conditioning, an effect quantifiable using scaling relations originally derived for numerical analysis of complex optimization problems. Our results demonstrate the physical toll of computational constraints on biological dynamics.
生命系统在远离平衡的状态下运行,但很少有通用框架能对生物瞬态给出全局界限。在诸如生态系统这样的高维生物网络中,长时间的瞬态源于子群落内部与子群落之间相互作用的不同时间尺度。在此,我们运用计算复杂性理论的工具,将复杂生态系统中的平衡过程构建为求解一个模拟优化问题的过程。我们表明,生态系统中物种间的功能冗余会产生困难的、病态的问题,这些问题在物理上表现为瞬态混沌。我们发现,降维方法近期在描述生态动力学方面取得成功是由于预处理,即快速弛豫与缓慢求解时间尺度解耦。在进化模拟中,我们表明对稳态物种多样性的选择会产生病态,这种效应可使用最初为复杂优化问题数值分析推导的标度关系来量化。我们的结果证明了计算约束对生物动力学造成的物理代价。