文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从骨髓间充质干细胞到疾病:甲基化在骨科中的关键作用

From bone marrow mesenchymal stem cells to diseases: the crucial role of mA methylation in orthopedics.

作者信息

Li Peng, Zhang Chu, Yin Wen, Tao Mijia, Niu Zhipeng, Cui Yutao, Wu Dankai, Gao Feng

机构信息

Traumatic orthopedics, The Second Hospital of Jilin University, Changchun, 130041, P. R. China.

出版信息

Stem Cell Res Ther. 2025 May 6;16(1):228. doi: 10.1186/s13287-025-04364-9.


DOI:10.1186/s13287-025-04364-9
PMID:40329380
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12057228/
Abstract

Elucidating the molecular mechanisms underlying orthopedic diseases is crucial for guiding therapeutic strategies and developing innovative interventions. N6-methyladenosine (mA)-an epitranscriptomic modification-has emerged as a key regulator of cellular fate and tissue homeostasis. Specifically, mA plays a pivotal role in several RNA biological processes such as precursor RNA splicing, 3'-end processing, nuclear export, translation, and stability. Recent advancements indicate that mA methylation regulates stem cell proliferation and osteogenic differentiation by modulating various signaling pathways. Extensive research has shown that abnormalities in mA methylation contribute significantly to the onset and progression of various orthopedic diseases such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors. This review aims to summarize the key proteases involved in mA methylation and their functions. The detailed mechanisms by which mA methylation regulates osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) through direct and indirect ways are also discussed, with a focus on specific molecular pathways. Finally, this review analyzes the roles and mechanisms of mA modification in the development and progression of multiple orthopedic diseases, offering a comprehensive understanding of the pathophysiology of these conditions and proposing new directions and molecular targets for innovative treatment strategies.

摘要

阐明骨科疾病背后的分子机制对于指导治疗策略和开发创新干预措施至关重要。N6-甲基腺苷(m6A)——一种表观转录组修饰——已成为细胞命运和组织稳态的关键调节因子。具体而言,m6A在多种RNA生物学过程中发挥关键作用,如前体RNA剪接、3'端加工、核输出、翻译和稳定性。最近的进展表明,m6A甲基化通过调节各种信号通路来调节干细胞增殖和成骨分化。广泛的研究表明,m6A甲基化异常在骨质疏松症(OP)、骨关节炎(OA)、类风湿性关节炎(RA)和骨肿瘤等各种骨科疾病的发生和发展中起重要作用。本综述旨在总结参与m6A甲基化的关键蛋白酶及其功能。还讨论了m6A甲基化通过直接和间接方式调节骨髓间充质干细胞(BMSC)成骨分化的详细机制,重点关注特定的分子途径。最后,本综述分析了m6A修饰在多种骨科疾病发生和发展中的作用和机制,全面了解这些疾病的病理生理学,并为创新治疗策略提出新的方向和分子靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/9fd512cbd970/13287_2025_4364_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/9a38f8de8313/13287_2025_4364_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/5cc986eab006/13287_2025_4364_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/7f1472c30ee9/13287_2025_4364_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/264c569ae925/13287_2025_4364_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/9fd512cbd970/13287_2025_4364_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/9a38f8de8313/13287_2025_4364_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/5cc986eab006/13287_2025_4364_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/7f1472c30ee9/13287_2025_4364_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/264c569ae925/13287_2025_4364_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/440a/12057228/9fd512cbd970/13287_2025_4364_Fig5_HTML.jpg

相似文献

[1]
From bone marrow mesenchymal stem cells to diseases: the crucial role of mA methylation in orthopedics.

Stem Cell Res Ther. 2025-5-6

[2]
One-carbon metabolism supports S-adenosylmethionine and m6A methylation to control the osteogenesis of bone marrow stem cells and bone formation.

J Bone Miner Res. 2024-9-2

[3]
YTHDF2-Mediated m6A methylation inhibition by miR27a as a protective mechanism against hormonal osteonecrosis in BMSCs.

BMC Musculoskelet Disord. 2024-5-6

[4]
METTL3 potentiates osteogenic differentiation of bone marrow mesenchymal stem cells via IGF2BP1/m6A/RUNX2.

Oral Dis. 2024-4

[5]
Emerging role of m6A modification in osteogenesis of stem cells.

J Bone Miner Metab. 2022-3

[6]
Mettl3-mediated mA RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis.

Nat Commun. 2018-11-14

[7]
ALKBH5 regulates etoposide-induced cellular senescence and osteogenic differentiation in osteoporosis through mediating the mA modification of VDAC3.

Sci Rep. 2024-10-8

[8]
Qianggu Decoction Alleviated Osteoporosis by Promoting Osteogenesis of BMSCs through Mettl3-Mediated mA Methylation.

Adv Biol (Weinh). 2024-12

[9]
RNA N6-methyladenosine demethylase FTO promotes osteoporosis through demethylating Runx2 mRNA and inhibiting osteogenic differentiation.

Aging (Albany NY). 2021-9-8

[10]
Epigenetic Mechanisms in Osteoporosis: Exploring the Power of mA RNA Modification.

J Cell Mol Med. 2025-1

引用本文的文献

[1]
Dynamic Rendition of Adipose Genes Under Epigenetic Regulation: Revealing New Mechanisms of Obesity Occurrence.

Curr Issues Mol Biol. 2025-7-11

本文引用的文献

[1]
Current progress in strategies to profile transcriptomic mA modifications.

Front Cell Dev Biol. 2024-7-11

[2]
Quercetin-Loaded Bioglass Injectable Hydrogel Promotes m6A Alteration of Per1 to Alleviate Oxidative Stress for Periodontal Bone Defects.

Adv Sci (Weinh). 2024-8

[3]
Maternal prednisone exposure during pregnancy elevates susceptibility to osteoporosis in female offspring: The role of mitophagy/FNDC5 alteration in skeletal muscle.

J Hazard Mater. 2024-5-5

[4]
METTL3 Promotes Osteogenic Differentiation of Human Periodontal Ligament Stem Cells through IGF2BP1-Mediated Regulation of Runx2 Stability.

Int J Med Sci. 2024-2-4

[5]
METTL3 knockdown suppresses RA-FLS activation through mA-YTHDC2-mediated regulation of AMIGO2.

Biochim Biophys Acta Mol Basis Dis. 2024-4

[6]
Unraveling IGFBP3-mediated m6A modification in fracture healing.

Pathol Res Pract. 2024-3

[7]
FTO regulates osteoclast development by modulating the proliferation and apoptosis of osteoclast precursors in inflammatory conditions.

Cell Signal. 2024-5

[8]
miR615-3p inhibited FBLN1 and osteogenic differentiation of umbilical cord mesenchymal stem cells by associated with YTHDF2 in a mA-miRNA interaction manner.

Cell Prolif. 2024-6

[9]
Hypoxia-induced ALKBH5 aggravates synovial aggression and inflammation in rheumatoid arthritis by regulating the m6A modification of CH25H.

Clin Immunol. 2024-4

[10]
Single-cell and spatial transcriptomics reveals that PTPRG activates the mA methyltransferase VIRMA to block mitophagy-mediated neuronal death in Alzheimer's disease.

Pharmacol Res. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索