Barcan Edmond Nicolae, Duta Carmen, Staicu Georgiana Adeline, Artene Stefan Alexandru, Alexandru Oana, Costachi Alexandra, Pirvu Andreea Silvia, Tache Daniela Elise, Stoian Irina, Popescu Stefana Oana, Tataranu Ligia Gabriela, Dricu Anica
Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Petru Rares 2, 200349 Craiova, Romania.
Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020022 Bucharest, Romania.
Int J Mol Sci. 2025 Apr 9;26(8):3503. doi: 10.3390/ijms26083503.
Glioblastoma (GBM) is an aggressive brain tumor characterized by molecular complexity and resistance to conventional treatments, including surgery, radiation, and chemotherapy. Despite these challenges, advancements in receptor tyrosine kinase (RTK) research, combined with multi-omics approaches, hold promise for improving patient outcomes and survivability. RTKs are central to GBM progression, influencing cell proliferation, survival, and angiogenesis. However, the complexity of RTK signaling necessitates a broader, integrative perspective, which has been enabled by the emergence of -omics sciences. Multi-omics technologies-including genomics, transcriptomics, proteomics, and metabolomics-offer unprecedented insights into the molecular landscape of GBM and its RTK-driven pathways. Genomic studies have revealed mutations and amplifications in RTK-related genes, while transcriptomics has uncovered alterations in gene expression patterns, providing a clearer picture of how these aberrations drive tumor behavior. Proteomics has further delineated changes in protein expression and post-translational modifications linked to RTK signaling, highlighting novel therapeutic targets. Metabolomics complements these findings by identifying RTK-associated metabolic reprogramming, such as shifts in glycolysis and lipid metabolism, which sustain tumor growth and therapy resistance. The integration of these multi-omics layers enables a comprehensive understanding of RTK biology in GBM. For example, studies have linked metabolic alterations with RTK activity, offering new biomarkers for tumor classification and therapeutic targeting. Additionally, single-cell transcriptomics has unveiled intratumoral heterogeneity, a critical factor in therapy resistance. This article highlights the transformative potential of multi-omics in unraveling the complexity of RTK signaling in GBM. By combining these approaches, researchers are paving the way for precision medicine strategies that may significantly enhance diagnostic accuracy and treatment efficacy, providing new hope for patients facing this devastating disease.
胶质母细胞瘤(GBM)是一种侵袭性脑肿瘤,其特征在于分子复杂性以及对包括手术、放疗和化疗在内的传统治疗方法具有抗性。尽管存在这些挑战,但受体酪氨酸激酶(RTK)研究的进展,结合多组学方法,有望改善患者的治疗结果和生存率。RTK是GBM进展的核心,影响细胞增殖、存活和血管生成。然而,RTK信号传导的复杂性需要更广泛、综合的视角,而组学科学的出现使之成为可能。多组学技术——包括基因组学、转录组学、蛋白质组学和代谢组学——为GBM的分子格局及其RTK驱动的途径提供了前所未有的见解。基因组研究揭示了RTK相关基因的突变和扩增,而转录组学则发现了基因表达模式的改变,从而更清楚地了解这些异常如何驱动肿瘤行为。蛋白质组学进一步描绘了与RTK信号传导相关的蛋白质表达和翻译后修饰的变化,突出了新的治疗靶点。代谢组学通过识别与RTK相关的代谢重编程(如糖酵解和脂质代谢的变化)来补充这些发现,这些变化维持肿瘤生长和治疗抗性。这些多组学层面的整合能够全面了解GBM中RTK的生物学特性。例如,研究已将代谢改变与RTK活性联系起来,为肿瘤分类和治疗靶点提供了新的生物标志物。此外,单细胞转录组学揭示了肿瘤内异质性,这是治疗抗性的一个关键因素。本文强调了多组学在揭示GBM中RTK信号传导复杂性方面的变革潜力。通过结合这些方法,研究人员正在为精准医学策略铺平道路,这些策略可能会显著提高诊断准确性和治疗效果,为面临这种毁灭性疾病的患者带来新的希望。
Int J Mol Sci. 2025-4-9
Int J Mol Sci. 2021-2-12
Biol Sex Differ. 2024-3-16
Clin Ter. 2023
Cancers (Basel). 2025-1-23
Acta Neuropathol Commun. 2024-10-12
Cancer Cell. 2024-7-8
Curr Issues Mol Biol. 2024-3-13