Astuti S D, Yessica A, Nurdin D Z I, Yaqubi A K, Arifianto D, Susilo Y, Zaidan A H, Abd Razak N A
Universitas Airlangga, Faculty of Science and Technology, Department of Physics, Surabaya, Indonesia.
Dr Soetomo University, Faculty of Engineering, Surabaya, Indonesia.
Braz J Biol. 2025 May 2;85:e288042. doi: 10.1590/1519-6984.288042. eCollection 2025.
Silver nanoparticles (AgNPs) have gained significant attention in antimicrobial treatments due to their potent antibacterial properties and potential applications in combating antibiotic-resistant pathogens. Green synthesis of AgNPs using natural extracts provides an eco-friendly and scalable alternative to chemical methods, leveraging plant bioactive compounds to enhance nanoparticle efficacy. Coffee extract, rich in polyphenols, effectively reduces mixed silver ions into pure silver nanoparticles at the nanoscale. This process not only provides an eco-friendly and sustainable method for AgNP synthesis but also ensures the production of high-quality nanoparticles with enhanced antibacterial properties, making it a promising alternative to traditional chemical reduction methods. This study investigates the biosynthesis of AgNPs using robusta, excelsa, and arabica coffee extracts as bioreductors, capitalizing on coffee's abundance and richness in polyphenols to produce efficient, customizable nanoparticles with improved antibacterial properties. The synthesized AgNPs were characterized using Ultraviolet-Visible (UV-Vis) spectroscopy and a Particle Size Analyzer (PSA). Antimicrobial photodynamic therapy (aPDT) with red laser exposure was employed to evaluate the effect of various energy densities on bacterial samples. Antibacterial efficacy was assessed using the diffusion well and Total Plate Count (TPC). The UV-Vis analysis revealed peak absorbance wavelengths of 425 nm, 450 nm, and 500 nm for robusta, arabica, and excelsa coffee extracts, respectively. PSA results indicated particle sizes at D50 of 73.08 nm (AgNPs-Arabica), 67.85 nm (AgNPs-Robusta), and 67.67 nm (AgNPs-Excelsa), confirming their nanoscale range (1-100 nm). Antibacterial tests showed the highest Escherichia coli bacterial death rate (95.73%) with AgNPs-Arabica and red laser treatment. Compared, Staphylococcus aureus bacterial death peaked at 94.97% with AgNPs-Excelsa and red laser treatment. These findings highlight the potential of green-synthesized AgNPs as effective antimicrobial agents, particularly when combined with laser-based therapies, offering innovative approaches for treating bacterial infections.
由于银纳米颗粒(AgNPs)具有强大的抗菌性能以及在对抗抗生素耐药病原体方面的潜在应用,它们在抗菌治疗中受到了广泛关注。利用天然提取物进行AgNPs的绿色合成提供了一种环保且可扩展的化学方法替代方案,借助植物生物活性化合物来提高纳米颗粒的功效。富含多酚的咖啡提取物能有效地将混合银离子还原为纳米级的纯银纳米颗粒。这一过程不仅为AgNP合成提供了一种环保且可持续的方法,还确保了高质量纳米颗粒的生产,其抗菌性能得到增强,使其成为传统化学还原方法的一个有前景的替代方案。本研究调查了使用罗布斯塔咖啡、埃克塞尔萨咖啡和阿拉比卡咖啡提取物作为生物还原剂来生物合成AgNPs,利用咖啡中丰富的多酚来生产具有高效、可定制且抗菌性能增强的纳米颗粒。使用紫外可见(UV-Vis)光谱仪和粒度分析仪(PSA)对合成的AgNPs进行了表征。采用红色激光照射的抗菌光动力疗法(aPDT)来评估不同能量密度对细菌样本的影响。使用扩散孔法和总平板计数(TPC)评估抗菌效果。UV-Vis分析显示,罗布斯塔咖啡、阿拉比卡咖啡和埃克塞尔萨咖啡提取物的峰值吸光波长分别为425nm、450nm和500nm。PSA结果表明,D50处的粒径分别为73.08nm(AgNPs-阿拉比卡)、67.85nm(AgNPs-罗布斯塔)和67.67nm(AgNPs-埃克塞尔萨),证实了它们在纳米级范围(1-100nm)。抗菌测试表明,AgNPs-阿拉比卡与红色激光处理对大肠杆菌的细菌死亡率最高(95.73%)。相比之下,AgNPs-埃克塞尔萨与红色激光处理对金黄色葡萄球菌的细菌死亡率峰值为94.97%。这些发现突出了绿色合成的AgNPs作为有效抗菌剂的潜力,特别是与基于激光的疗法相结合时,为治疗细菌感染提供了创新方法。
J Colloid Interface Sci. 2016-11-15
Cell Mol Biol (Noisy-le-grand). 2016-8-29