Han Yang, Ge Lishuang, Feng Juanjuan, Zhang Meng, Zhang Hexuan, Shi Lin, Wu Di, Zhang Xuexian, Guo Liping, Qi Tingxiang, Tang Huini, Qiao Xiuqin, Xing Chaozhu, Wu Jianyong
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China.
Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
Plant Biotechnol J. 2025 Jul;23(7):2949-2962. doi: 10.1111/pbi.70105. Epub 2025 May 7.
Cytoplasmic male sterility (CMS) serves as a pivotal tool for exploiting hybrid vigour and studying nuclear-cytoplasmic interactions. Despite its long-standing use in cotton breeding, the underlying mechanisms of the CMS-D2 system remain elusive. Our study unravelled the role of the mitochondrial chimeric gene orf610a in reducing fertility in cotton through its interaction with ATP synthase subunit D (atpQ). Using yeast two-hybrid, bimolecular luciferase complementation, and transgenic overexpression studies, we identified a unique interaction between orf610a and atpQ, which disturbs the assembly of ATP synthase. This interaction leads to a decrease in ATP levels, an increase in HO production, and mitochondrial dysfunctions, which are associated with pollen abortion. Transcriptomic and biochemical analyses of three independent overexpression lines identified 1711 differentially expressed genes (DEGs), among which 10 were related to reactive oxygen species (ROS) and ATP production. Phenotypic analysis confirmed that orf610a expression causes abnormal anther development and reduced pollen viability, contributing to sterility. Notably, SEM and TEM analyses highlighted structural anomalies in the pollen of orf610a-overexpressing lines, supporting the detrimental impacts of altered ATP synthase function. Our findings suggest that orf610a's interaction with ATP synthase components disrupts normal mitochondrial function and energy production, leading to male sterility in cotton. Understanding the molecular interactions involved in CMS can aid in developing strategies to manipulate sterility for crop improvement, offering insights into mitochondrial-nuclear interactions that could impact future breeding programmes.
细胞质雄性不育(CMS)是利用杂种优势和研究核质相互作用的关键工具。尽管其在棉花育种中已长期使用,但CMS-D2系统的潜在机制仍不清楚。我们的研究揭示了线粒体嵌合基因orf610a通过与ATP合酶亚基D(atpQ)相互作用降低棉花育性的作用。通过酵母双杂交、双分子荧光素酶互补和转基因过表达研究,我们确定了orf610a与atpQ之间的独特相互作用,这种相互作用扰乱了ATP合酶的组装。这种相互作用导致ATP水平降低、HO产生增加和线粒体功能障碍,这些都与花粉败育有关。对三个独立过表达系的转录组和生化分析确定了1711个差异表达基因(DEG),其中10个与活性氧(ROS)和ATP产生有关。表型分析证实,orf610a的表达导致花药发育异常和花粉活力降低,从而导致不育。值得注意的是,扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析突出了orf610a过表达系花粉中的结构异常,支持了ATP合酶功能改变的有害影响。我们的研究结果表明,orf610a与ATP合酶成分的相互作用破坏了正常的线粒体功能和能量产生,导致棉花雄性不育。了解CMS中涉及的分子相互作用有助于制定操纵不育性以改良作物的策略,为可能影响未来育种计划的线粒体-核相互作用提供见解。