Wu Gang, Yang Wuhai, Yang Yang, Choe Yoong-Kee, Yoo Eunjoo
Graduate School of System and Information Engineering, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8573, Japan.
Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono, Tsukuba 305-8568, Japan.
ACS Nano. 2025 May 20;19(19):18244-18255. doi: 10.1021/acsnano.4c18162. Epub 2025 May 7.
Aqueous zinc-ion batteries have attracted intensive attention because of their safety, low cost, and high theoretical capacity; however, their practical application is hindered by challenges, such as Zn dendrite formation, the hydrogen evolution reaction, and a limited cycle life. Herein, a zinc anode interface is prepared by combining sodium alginate (SA) with hydroxyl and carboxyl groups as a binder and zeolite imidazole framework (ZIF-7) as the ion transport channel. The carboxyl groups in SA exhibit strong Zn-ion affinity, forming a cross-linked structure with ZIF-7 and creating a self-reinforcing coating that promotes uniform Zn ion flux while the ZIF-7 provides suitable ionic channels to enable oriented deposition. A ZIF-7/SA coated Zn anode (ZIF-7/SA@Zn) exhibited a high Coulombic efficiency of 99.7% after 1500 cycles at 10 mA cm and 1 mA h cm. Even under high-current and high-capacity conditions (20 mA cm, 20 mA h cm), ZIF-7/SA@Zn maintained stable cycling for 500 h. When ZIF-7/SA@Zn was paired with a ZnVO cathode, the resultant full cell retained more than 77.2% of its capacity after 10,000 cycles at 3000 mA g. This work proposes a strategy to stabilize Zn anodes under high currents, advancing high-performance Zn-based energy storage systems.
水系锌离子电池因其安全性、低成本和高理论容量而备受关注;然而,诸如锌枝晶形成、析氢反应和有限的循环寿命等挑战阻碍了它们的实际应用。在此,通过将具有羟基和羧基的海藻酸钠(SA)作为粘合剂与沸石咪唑框架(ZIF-7)作为离子传输通道相结合来制备锌负极界面。SA中的羧基表现出很强的锌离子亲和力,与ZIF-7形成交联结构并形成自增强涂层,促进锌离子通量均匀,而ZIF-7提供合适的离子通道以实现定向沉积。ZIF-7/SA包覆的锌负极(ZIF-7/SA@Zn)在10 mA cm和1 mA h cm下循环1500次后表现出99.7%的高库仑效率。即使在高电流和高容量条件下(20 mA cm,20 mA h cm),ZIF-7/SA@Zn仍能稳定循环500小时。当ZIF-7/SA@Zn与ZnVO正极配对时,所得的全电池在3000 mA g下循环10000次后仍保留其容量的77.2%以上。这项工作提出了一种在高电流下稳定锌负极的策略,推动了高性能锌基储能系统的发展。