Suppr超能文献

变异检测中的人工智能:综述

Artificial intelligence in variant calling: a review.

作者信息

Abdelwahab Omar, Torkamaneh Davoud

机构信息

Département de Phytologie, Université Laval, Québec City, QC, Canada.

Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada.

出版信息

Front Bioinform. 2025 Apr 23;5:1574359. doi: 10.3389/fbinf.2025.1574359. eCollection 2025.

Abstract

Artificial intelligence (AI) has revolutionized numerous fields, including genomics, where it has significantly impacted variant calling, a crucial process in genomic analysis. Variant calling involves the detection of genetic variants such as single nucleotide polymorphisms (SNPs), insertions/deletions (InDels), and structural variants from high-throughput sequencing data. Traditionally, statistical approaches have dominated this task, but the advent of AI led to the development of sophisticated tools that promise higher accuracy, efficiency, and scalability. This review explores the state-of-the-art AI-based variant calling tools, including DeepVariant, DNAscope, DeepTrio, Clair, Clairvoyante, Medaka, and HELLO. We discuss their underlying methodologies, strengths, limitations, and performance metrics across different sequencing technologies, alongside their computational requirements, focusing primarily on SNP and InDel detection. By comparing these AI-driven techniques with conventional methods, we highlight the transformative advancements AI has introduced and its potential to further enhance genomic research.

摘要

人工智能(AI)已经彻底改变了众多领域,包括基因组学,在该领域它对变异检测产生了重大影响,变异检测是基因组分析中的一个关键过程。变异检测涉及从高通量测序数据中检测遗传变异,如单核苷酸多态性(SNP)、插入/缺失(InDel)和结构变异。传统上,统计方法主导了这项任务,但人工智能的出现促使了先进工具的开发,这些工具有望实现更高的准确性、效率和可扩展性。本综述探讨了基于人工智能的最新变异检测工具,包括DeepVariant、DNAscope、DeepTrio、Clair、Clairvoyante、Medaka和HELLO。我们讨论了它们的基本方法、优势、局限性以及在不同测序技术中的性能指标,以及它们的计算要求,主要关注SNP和InDel检测。通过将这些人工智能驱动的技术与传统方法进行比较,我们突出了人工智能带来的变革性进展及其进一步提升基因组研究的潜力。

相似文献

1
Artificial intelligence in variant calling: a review.
Front Bioinform. 2025 Apr 23;5:1574359. doi: 10.3389/fbinf.2025.1574359. eCollection 2025.
2
Performance analysis of conventional and AI-based variant callers using short and long reads.
BMC Bioinformatics. 2023 Dec 14;24(1):472. doi: 10.1186/s12859-023-05596-3.
4
HELLO: improved neural network architectures and methodologies for small variant calling.
BMC Bioinformatics. 2021 Aug 14;22(1):404. doi: 10.1186/s12859-021-04311-4.
5
Machine learning random forest for predicting oncosomatic variant NGS analysis.
Sci Rep. 2021 Nov 8;11(1):21820. doi: 10.1038/s41598-021-01253-y.
7
Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data.
BMC Bioinformatics. 2019 Jun 17;20(1):342. doi: 10.1186/s12859-019-2928-9.
8
Tool evaluation for the detection of variably sized indels from next generation whole genome and targeted sequencing data.
PLoS Comput Biol. 2022 Feb 17;18(2):e1009269. doi: 10.1371/journal.pcbi.1009269. eCollection 2022 Feb.
9
Artificial intelligence (AI) in restorative dentistry: current trends and future prospects.
BMC Oral Health. 2025 Apr 18;25(1):592. doi: 10.1186/s12903-025-05989-1.
10
Benchmarking variant callers in next-generation and third-generation sequencing analysis.
Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa148.

引用本文的文献

1
Transgene Mapping in Animals: What to Choose?
Int J Mol Sci. 2025 May 14;26(10):4705. doi: 10.3390/ijms26104705.

本文引用的文献

2
Comparison of structural variant callers for massive whole-genome sequence data.
BMC Genomics. 2024 Mar 28;25(1):318. doi: 10.1186/s12864-024-10239-9.
4
A comprehensive review of deep learning-based variant calling methods.
Brief Funct Genomics. 2024 Jul 19;23(4):303-313. doi: 10.1093/bfgp/elae003.
5
Extending DeepTrio for sensitive detection of complex mutation patterns.
NAR Genom Bioinform. 2024 Feb 10;6(1):lqae013. doi: 10.1093/nargab/lqae013. eCollection 2024 Mar.
6
Utility of long-read sequencing for All of Us.
Nat Commun. 2024 Jan 29;15(1):837. doi: 10.1038/s41467-024-44804-3.
7
Symphonizing pileup and full-alignment for deep learning-based long-read variant calling.
Nat Comput Sci. 2022 Dec;2(12):797-803. doi: 10.1038/s43588-022-00387-x. Epub 2022 Dec 19.
8
Performance analysis of conventional and AI-based variant callers using short and long reads.
BMC Bioinformatics. 2023 Dec 14;24(1):472. doi: 10.1186/s12859-023-05596-3.
9
Applications for Deep Learning in Epilepsy Genetic Research.
Int J Mol Sci. 2023 Sep 27;24(19):14645. doi: 10.3390/ijms241914645.
10
Boosting variant-calling performance with multi-platform sequencing data using Clair3-MP.
BMC Bioinformatics. 2023 Aug 3;24(1):308. doi: 10.1186/s12859-023-05434-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验