Suppr超能文献

用于氧还原反应的有序铂锌合金催化剂的耐磷酸性和本征活性增强。

Enhanced phosphoric acid tolerance and intrinsic activity of ordered platinum-zinc alloy catalysts for oxygen reduction reaction.

作者信息

Zhang Hong, Li Huanqiao, Zhang Xiaoming, Yu Shansheng, Wang Suli, Sun Gongquan

机构信息

Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Fuel Cells & Hybrid Power Sources, Chinese Academy of Sciences, Dalian 116023, China.

Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of Fuel Cells & Hybrid Power Sources, Chinese Academy of Sciences, Dalian 116023, China.

出版信息

J Colloid Interface Sci. 2025 Oct;695:137739. doi: 10.1016/j.jcis.2025.137739. Epub 2025 Apr 29.

Abstract

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer significant advantages in energy conversion efficiency but face severe challenges from phosphoric acid (PA) poisoning, which deactivates platinum (Pt)-based oxygen reduction reaction (ORR) catalysts. This study presents a dual strategy combining structural ordering and electrochemical potential cycling to enhance the intrinsic catalytic activity and PA tolerance of platinum-zinc (PtZn) alloy catalysts. Ordered PtZn (L1-PtZn) alloy electrocatalysts synthesized through thermal annealing demonstrated enhanced ORR performance, achieving a mass activity of 0.42 A mg-1Pt, surpassing the A1-PtZn (0.28 A·mg-1Pt) and commercial Pt/C electrocatalysts (0.17 A·mg-1Pt). Transmission electron microscopy (TEM) and X-ray diffraction (XRD) and analyses revealed the structural advantages of L1-PtZn, including optimized lattice strain and reduced surface Zn obstacle. Single-cell tests confirmed its superior power density of 411 mW·cm, outperforming disordered alloys and commercial catalysts. Under phosphoric acid exposure, the L1-PtZn catalyst demonstrated exceptional tolerance and exhibiting minimal Pt and Zn dissolution during accelerated degradation tests. The remarkable stability and enhanced activity are attributed to the inherent atomic ordering and surface reconstruction mechanisms of L1-PtZn. These findings underscore the potential of ordered PtZn alloys as next-generation cathode catalysts for HT-PEMFCs, addressing critical challenges of PA tolerance and long-term stability.

摘要

高温质子交换膜燃料电池(HT-PEMFCs)在能量转换效率方面具有显著优势,但面临来自磷酸(PA)中毒的严峻挑战,磷酸会使基于铂(Pt)的氧还原反应(ORR)催化剂失活。本研究提出了一种结合结构有序化和电化学势循环的双重策略,以提高铂锌(PtZn)合金催化剂的本征催化活性和耐磷酸性。通过热退火合成的有序PtZn(L1-PtZn)合金电催化剂表现出增强的ORR性能,质量活性达到0.42 A mg-1Pt,超过了A1-PtZn(0.28 A·mg-1Pt)和商业Pt/C电催化剂(0.17 A·mg-1Pt)。透射电子显微镜(TEM)、X射线衍射(XRD)分析揭示了L1-PtZn的结构优势,包括优化的晶格应变和减少的表面Zn障碍。单电池测试证实其具有411 mW·cm的优异功率密度,优于无序合金和商业催化剂。在磷酸暴露下,L1-PtZn催化剂表现出优异的耐受性,在加速降解测试中Pt和Zn的溶解极少。卓越的稳定性和增强的活性归因于L1-PtZn固有的原子有序化和表面重构机制。这些发现强调了有序PtZn合金作为HT-PEMFCs下一代阴极催化剂的潜力,解决了耐磷酸性和长期稳定性的关键挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验