铁自噬衍生的铁在对乙酰氨基酚诱导的肝损伤中导致蛋白质硝化和线粒体功能障碍。

Ferritinophagy-derived iron causes protein nitration and mitochondrial dysfunction in acetaminophen-induced liver injury.

作者信息

Liang Shi-Min, Shen Jie, Ma Rui-Ting, Du Nan-Di, Wang Rui, Wu Zuo-Min, Shan Min, Liang Shi-Rong, Hu Wei-Rong, Wang Wei, Sheng Wei-Wei, Huang De-Feng, Chen Xiao-Hua

机构信息

Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China.

Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China; Fujian Medical University, Fuzhou 350000, Fujian Province, China.

出版信息

Toxicol Appl Pharmacol. 2025 Jul;500:117376. doi: 10.1016/j.taap.2025.117376. Epub 2025 May 6.

Abstract

Acetaminophen (APAP), also known as paracetamol, is a widely used analgesic and antipyretic drug. While the drug is effective and safe at recommended doses, excessive intake can lead to acute liver injury (ALI) due to the formation of the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes glutathione (GSH). Despite regulatory efforts, APAP-related liver injury remains a significant health concern. However, the cellular pathways that contribute to APAP-induced hepatotoxicity-particularly those involving iron metabolism-remain incompletely understood. To address this gap, we investigated whether ferritinophagy-the autophagic degradation of ferritin heavy chain (FTH) mediated by nuclear receptor coactivator 4 (NCOA4)-contributes to APAP-induced ALI. We administered APAP to C57BL/6 J mice and AML-12 hepatocyte cells and monitored markers of ferritinophagy, iron release, and hepatic injury. In parallel, we assessed the protective effect of the iron chelator deferoxamine (DFO) to validate the pathogenic role of free iron in vivo. First, in vivo studies revealed that APAP treatment significantly upregulated NCOA4 and FTH mRNA expression at 6 h post-exposure, coupled with increased LC3II protein and decreased p62, NCOA4, and FTH protein levels-hallmarks of active ferritinophagy. Importantly, pretreatment of mice with DFO markedly attenuated serum ALT elevation and histopathological liver damage, indicating that iron released via ferritinophagy critically mediates APAP-induced hepatotoxicity. To corroborate these findings at the cellular level, we measured free iron and ferritinophagy-related proteins in AML-12 cells following APAP exposure. We observed a progressive increase in free iron, with FTH protein level peaking at 2 h and subsequently declining by 6 and 12 h. Concurrently, LC3II protein level rose while NCOA4 protein decreased at 6 h, confirming activation of ferritinophagy in vitro. Although canonical ferroptosis is driven by iron-catalyzed lipid peroxidation (LPO), our APAP model did not exhibit key ferroptotic signatures. In vivo, malondialdehyde (MDA) level and Ptgs2 mRNA did not increase significantly, nor did GPX4 protein level decrease after APAP administration. Similarly, AML-12 cells failed to show a significant rise in C11-BODIPY oxidation after APAP treatment. Thus, APAP-induced ferritinophagy doesn't result in significant LPO. Instead of LPO, APAP exposure led to pronounced protein nitration and mitochondrial dysfunction. Specifically, the protein level of nitrotyrosine (NT) increased significantly at 6 h in vivo, while AML-12 cells exhibited elevated mitochondrial reactive oxygen species (MtROS) alongside reduced mitochondrial membrane potential (MMP) and ATP level. Collectively, these data suggest that ferritinophagy-derived iron triggers protein nitration and mitochondrial impairment, culminating in cell death. Given NCOA4's central role in ferritinophagy, we next evaluated whether its knock-down could mitigate APAP-induced mitochondrial dysfunction. NCOA4 siRNA in AML-12 cells restored ATP level, enhanced MMP, and reduced Fe accumulation and MtROS generation after APAP treatment. Overall, our findings illuminate ferritinophagy-derived iron as a critical driver of APAP hepatotoxicity and nominate NCOA4 inhibition as a promising therapeutic strategy against APAP-induced ALI.

摘要

对乙酰氨基酚(APAP),也被称为扑热息痛,是一种广泛使用的止痛和解热药物。虽然该药物在推荐剂量下有效且安全,但过量摄入会因有毒代谢物N - 乙酰 - 对苯醌亚胺(NAPQI)的形成导致急性肝损伤(ALI),NAPQI会消耗谷胱甘肽(GSH)。尽管有监管措施,APAP相关的肝损伤仍然是一个重大的健康问题。然而,导致APAP诱导的肝毒性的细胞途径,特别是那些涉及铁代谢的途径,仍未完全了解。为了填补这一空白,我们研究了铁蛋白自噬(由核受体辅激活因子4(NCOA4)介导的铁蛋白重链(FTH)的自噬降解)是否促成APAP诱导的ALI。我们给C57BL / 6 J小鼠和AML - 12肝细胞施用APAP,并监测铁蛋白自噬、铁释放和肝损伤的标志物。同时,我们评估了铁螯合剂去铁胺(DFO)的保护作用,以验证体内游离铁的致病作用。首先,体内研究表明,APAP处理在暴露后6小时显著上调NCOA4和FTH mRNA表达,同时LC3II蛋白增加,p62、NCOA4和FTH蛋白水平降低,这是活跃铁蛋白自噬的标志。重要的是,用DFO预处理小鼠显著减轻了血清ALT升高和肝脏组织病理学损伤,表明通过铁蛋白自噬释放的铁关键地介导了APAP诱导的肝毒性。为了在细胞水平上证实这些发现,我们测量了APAP暴露后AML - 12细胞中的游离铁和铁蛋白自噬相关蛋白。我们观察到游离铁逐渐增加,FTH蛋白水平在2小时达到峰值,随后在6小时和12小时下降。同时,LC3II蛋白水平在6小时上升,而NCOA4蛋白下降,证实了体外铁蛋白自噬的激活。虽然典型的铁死亡是由铁催化的脂质过氧化(LPO)驱动的,但我们的APAP模型没有表现出关键的铁死亡特征。在体内,丙二醛(MDA)水平和Ptgs2 mRNA没有显著增加,APAP给药后GPX4蛋白水平也没有降低。同样,APAP处理后AML - 12细胞中C11 - BODIPY氧化也没有显著升高。因此,APAP诱导的铁蛋白自噬不会导致显著的LPO。APAP暴露没有导致LPO,但导致了明显的蛋白质硝化和线粒体功能障碍。具体而言,体内硝基酪氨酸(NT)蛋白水平在6小时显著增加,而AML - 12细胞表现出线粒体活性氧(MtROS)升高,同时线粒体膜电位(MMP)和ATP水平降低。总体而言,这些数据表明铁蛋白自噬衍生的铁触发蛋白质硝化和线粒体损伤,最终导致细胞死亡。鉴于NCOA4在铁蛋白自噬中的核心作用,我们接下来评估其敲低是否可以减轻APAP诱导的线粒体功能障碍。AML - 12细胞中的NCOA4 siRNA在APAP处理后恢复了ATP水平,增强了MMP,并减少了铁积累和MtROS生成。总的来说,我们的研究结果揭示了铁蛋白自噬衍生的铁是APAP肝毒性的关键驱动因素,并将NCOA4抑制作为对抗APAP诱导的ALI的一种有前景的治疗策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索