Miao Xinwen, Law Michelle Cheok Yien, Kumar Jatin, Chng Choon-Peng, Zeng Yongpeng, Tan Yaw Bia, Wu Jiawei, Guo Xiangfu, Huang Lizhen, Zhuang Yinyin, Gao Weibo, Huang Changjin, Luo Dahai, Zhao Wenting
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
Nat Commun. 2025 May 8;16(1):4282. doi: 10.1038/s41467-025-59402-0.
Positive-sense RNA viruses, including SARS-CoV-1 and -2, DENV, and CHIKV, replicate in curved membrane compartments within host cells. Non-structural proteins (nsPs) critically regulate these nanoscale membrane structures, yet their curvature-dependent assembly remains elusive due to the challenges of imaging nanoscale interaction on curved surfaces. Using vertically aligned nanostructures to generate pre-defined membrane curvatures, we here investigate the impact of curvature on nsPs assembly. Taking CHIKV as a model, we reveal that nsP1 preferentially binds and stabilizes on positively curved membranes, with stronger accumulation at radii ≤150 nm. This is driven by hydrophobic residues in the membrane association (MA) loops of individual nsP1. Molecular dynamics simulations further confirm the improved binding stability of nsP1 on curved membranes, particularly when it forms a dodecamer ring. Together, nsP1 supports a strong saddle curvature association, with flexible MA loops sensing a range of positive curvatures in the x-z plane while the rigid dodecamer stabilizing fixed negative curvature in the x-y plane - crucial for constraining the membrane spherule neck during replication progression. Moreover, CHIKV replication enriches on patterned nanoring structures, underscoring the curvature-guided assembly of the viral replication complex. Our findings highlight membrane curvature as a key regulator of viral nsPs organization, opening new avenues for studying membrane remodeling in viral replication.
Virology. 2020-2-24
J Virol. 2024-7-23
J Cell Sci. 2024-9-1
Nat Cell Biol. 2023-10
Nat Commun. 2022-12-3
Sci Adv. 2022-12-2
Elife. 2022-10-19