Yan Qian-Qian, Tessarolo Jacopo, Hasegawa Shota, Han Zi-Yi, Benchimol Elie, Mikherdov Alexander S, Drechsler Christoph, Holstein Julian J, Chen Yen-Ting, Ganta Sudhakar, Clever Guido H
Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany.
Department of Chemistry, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
Small. 2025 Sep;21(37):e2500751. doi: 10.1002/smll.202500751. Epub 2025 May 9.
Self-assembled metalla-macrocycles can serve as versatile platforms to prepare functional materials. Combined with a predictable structural design, they allow for the embedding of a broad range of properties. A series of dinuclear rings MR (M = Zn(II), Co(II/III), R = bis-salen macrocycle) is reported, which combine chirality with aggregation-induced emission (AIE) and chiroptical sign reversal. The modular system forms from three building blocks: i) tetraphenylethylene (TPE) backbones, ii) chiral salen coordination environments, and iii) chelated transition metal ions. The chiroptical properties are modulated by the choice of metal ion, solvent, and the degree of aggregation, with growing intermolecular stacking leading to an increase of the emission intensity. Aggregation of the macrocycles leads to intensification and inversion of the circular dichroism (CD) signal, and, for ZnR, of the circularly polarized luminescence (CPL), with |g| rising by one order of magnitude. The metalla-macrocycles are characterized by NMR, FT-IR, and ESI-MS methods and three single-crystal X-ray structures. Dynamic light scattering (DLS), scanning electron microscopy (SEM), and computations are employed to examine the aggregates, showing helically twisted fibers whose handedness is controlled by the chiral component. Gaining stimuli-responsive control over chiroptical properties contributes to new opportunities for the development of smart optical materials and sensors.
自组装金属大环可作为制备功能材料的通用平台。结合可预测的结构设计,它们能够嵌入多种性质。本文报道了一系列双核环MR(M = Zn(II)、Co(II/III),R = 双水杨醛大环),其将手性与聚集诱导发光(AIE)以及手性光学符号反转相结合。该模块化体系由三个构建单元组成:i)四苯乙烯(TPE)骨架,ii)手性水杨醛配位环境,以及iii)螯合过渡金属离子。通过选择金属离子、溶剂和聚集程度来调节手性光学性质,分子间堆积的增加导致发射强度增强。大环的聚集导致圆二色性(CD)信号以及对于ZnR而言圆偏振发光(CPL)的增强和反转,|g|上升一个数量级。通过核磁共振(NMR)、傅里叶变换红外光谱(FT-IR)和电喷雾电离质谱(ESI-MS)方法以及三个单晶X射线结构对金属大环进行了表征。采用动态光散射(DLS)、扫描电子显微镜(SEM)和计算来研究聚集体,结果显示出螺旋扭曲的纤维,其手性由手性组分控制。对手性光学性质实现刺激响应控制为智能光学材料和传感器的开发带来了新机遇。