Suppr超能文献

利用RR间期的动态相关性进行跑步中的阈值估计。

Threshold estimation in running using dynamical correlations of RR intervals.

作者信息

Kanniainen Matias, Laatikainen-Raussi Vesa, Pukkila Teemu, Vohlakari Krista, Hynynen Esa, Ihalainen Johanna K, Räsänen Esa

机构信息

Computational Physics Laboratory, Tampere University, Tampere, Finland.

Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.

出版信息

Physiol Rep. 2025 May;13(9):e70241. doi: 10.14814/phy2.70241.

Abstract

We study the estimation of aerobic threshold (AeT) and anaerobic threshold (AnT) using dynamical detrended fluctuation analysis (DDFA). Conventionally, the thresholds are estimated in laboratory settings, where the subject performs an incremental exercise test on a cycloergometer or treadmill. We compared DDFA-based thresholds (DDFAT and DDFAT) with lactate thresholds (LT and LT) and examined thresholds derived from theoretical and measured maximal heart rates (HR). The analysis was conducted on 58 subjects undergoing an incremental treadmill running test. Our findings indicate significant discrepancies between thresholds derived from theoretical and measured maximal HRs compared to lactate thresholds. Specifically, theoretical maximal HR thresholds consistently underestimated lactate thresholds, exhibiting systematic bias. Measured maximal HR thresholds also showed a consistent underestimation, though with improved alignment to lactate thresholds. In contrast, the DDFA-based method demonstrated reasonable agreement with lactate thresholds and lacked systematic bias. The DDFA-based approach offers a simple and accurate alternative for estimating AeT and AnT. Its potential for continuous monitoring makes it suitable for integration into wearable devices such as smartwatches and heart rate monitors.

摘要

我们使用动态去趋势波动分析(DDFA)研究有氧阈值(AeT)和无氧阈值(AnT)的估计。传统上,这些阈值是在实验室环境中估计的,受试者在自行车测力计或跑步机上进行递增运动测试。我们将基于DDFA的阈值(DDFAT和DDFAT)与乳酸阈值(LT和LT)进行了比较,并研究了从理论和测量的最大心率(HR)得出的阈值。对58名进行递增跑步机跑步测试的受试者进行了分析。我们的研究结果表明,与乳酸阈值相比,从理论和测量的最大心率得出的阈值之间存在显著差异。具体而言,理论最大心率阈值始终低估乳酸阈值,表现出系统偏差。测量的最大心率阈值也显示出一致的低估,尽管与乳酸阈值的一致性有所提高。相比之下,基于DDFA的方法与乳酸阈值显示出合理的一致性,并且没有系统偏差。基于DDFA的方法为估计AeT和AnT提供了一种简单而准确的替代方法。其连续监测的潜力使其适合集成到智能手表和心率监测器等可穿戴设备中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b2/12064344/a687233bb2b6/PHY2-13-e70241-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验