Suppr超能文献

司美格鲁肽在2型糖尿病患者中的心脏和肾脏安全性:一项基于FAERS的真实世界研究

The Cardiac and Renal Safety of Semaglutide in Patients with Type 2 Diabetes: A Real-World Study Based on FAERS.

作者信息

Wang Jingyu, Xie Tong, Zhang Yuemiao, Zhang Hong

机构信息

Renal Division, Peking University First Hospital, Beijing, China.

Peking University Institute of Nephrology, Beijing, China.

出版信息

Cardiorenal Med. 2025;15(1):413-422. doi: 10.1159/000546238. Epub 2025 May 11.

Abstract

BACKGROUND

Recently, a large clinical trial found that treatment with semaglutide significantly reduced the risk of renal damage and cardiovascular death in patients with type 2 diabetes (T2D). To validate these findings and ensure the suitability of the drug, it is necessary to address the renal and cardiac safety of semaglutide in patients with T2D through real-world safety evidence.

METHODS

We examined post-marketing data on the use of semaglutide in patients with T2D using disproportionality analysis based on the FDA Adverse Event Reporting System database. We focused on the detection of positive signals for acute and chronic renal injury and cardiac adverse events associated with semaglutide therapy.

RESULTS

A total of 2,380 patients were enrolled in semaglutide therapy in T2D patients with no renal or cardiac positive signals in four algorithmic thresholds, including disproportionality analysis.

CONCLUSIONS

In the current study, we observed no significant cardiac or renal safety signals in patients with T2D treated with semaglutide. Our results provide further support for its use as initial and combination therapy in relevant populations.

摘要

背景

最近,一项大型临床试验发现,司美格鲁肽治疗可显著降低2型糖尿病(T2D)患者的肾损伤风险和心血管死亡风险。为了验证这些发现并确保药物的适用性,有必要通过真实世界的安全性证据来评估司美格鲁肽在T2D患者中的肾脏和心脏安全性。

方法

我们使用基于美国食品药品监督管理局(FDA)不良事件报告系统数据库的不成比例分析,研究了司美格鲁肽在T2D患者中的上市后使用数据。我们重点检测与司美格鲁肽治疗相关的急性和慢性肾损伤以及心脏不良事件的阳性信号。

结果

在四个算法阈值(包括不成比例分析)中,共有2380例T2D患者接受了司美格鲁肽治疗,未出现肾脏或心脏阳性信号。

结论

在当前研究中,我们观察到接受司美格鲁肽治疗的T2D患者未出现显著的心脏或肾脏安全信号。我们的结果为其在相关人群中作为初始治疗和联合治疗的应用提供了进一步支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验