文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测世界卫生组织1级脑膜瘤复发的机器学习算法的开发

Development of a Machine Learning Algorithm for the Prediction of WHO Grade 1 Meningioma Recurrence.

作者信息

Ammanuel Simon G, Stenerson Matthew, Staniszewski Thomas, Kalluri Manasa, Lee Benjamin, Nico Elsa, Ahmed Azam S

机构信息

Department of Neurological Surgery, University of Wisconsin Hospitals and Clinics, Madison, USA.

Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, USA.

出版信息

Cureus. 2025 Apr 10;17(4):e82033. doi: 10.7759/cureus.82033. eCollection 2025 Apr.


DOI:10.7759/cureus.82033
PMID:40352015
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12065630/
Abstract

Objective Meningiomas commonly recur following gross total resection (GTR), and the risk of recurrence is difficult to predict using current classification schemes such as the World Health Organization (WHO) tumor grade. This study aimed to create a predictive model of recurrence risk following GTR of WHO grade 1 meningiomas based on histopathological and epidemiological factors.  Methods A retrospective chart review was completed for all patients at our institution who underwent their first surgery for a WHO grade 1 meningioma between 2017 and 2022. Those with genetic predispositions, such as neurofibromatosis type 2, were excluded. Baseline characteristics, including histopathology findings, were obtained, and we used a Risk-calibrated Superspase Linear Integer Model (Risk-SLIM) with a five-fold cross-validation (CV) to create a predictive model of recurrence over an average follow-up of three years.  Results Univariate analysis of our selected variables revealed a significant predictive association between WHO grade 1 meningioma recurrence and subtotal resection but not with any other variable. However, the meningioma recurrence score (MRS) generated by our machine learning algorithm revealed multiple predictive factors of recurrence, including age, female gender, and various histopathologic features, including the Ki-67/MIB-1 index. Conclusions Machine learning algorithms like the one we present here may help identify patients at high risk of recurrence of their WHO grade 1 meningioma, and they are more likely to benefit from closer postoperative surveillance or adjuvant treatment, even when GTR is achieved.

摘要

目的 脑膜瘤在全切除(GTR)后常复发,使用当前的分类方案(如世界卫生组织(WHO)肿瘤分级)难以预测复发风险。本研究旨在基于组织病理学和流行病学因素创建WHO 1级脑膜瘤GTR后复发风险的预测模型。 方法 对2017年至2022年间在本机构首次接受WHO 1级脑膜瘤手术的所有患者进行回顾性病历审查。排除有遗传易感性的患者,如2型神经纤维瘤病患者。获取包括组织病理学结果在内的基线特征,并使用具有五重交叉验证(CV)的风险校准超空间线性整数模型(Risk-SLIM)创建一个在平均三年随访期内的复发预测模型。 结果 对我们所选变量的单因素分析显示,WHO 1级脑膜瘤复发与次全切除之间存在显著的预测关联,但与其他任何变量均无关联。然而,我们的机器学习算法生成的脑膜瘤复发评分(MRS)显示了多个复发预测因素,包括年龄、女性性别以及各种组织病理学特征,包括Ki-67/MIB-1指数。 结论 我们在此展示的这类机器学习算法可能有助于识别WHO 1级脑膜瘤复发风险高的患者,即使实现了GTR,他们也更有可能从更密切的术后监测或辅助治疗中获益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58d6/12065630/a8cc4c6d672d/cureus-0017-00000082033-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58d6/12065630/a8cc4c6d672d/cureus-0017-00000082033-i01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58d6/12065630/a8cc4c6d672d/cureus-0017-00000082033-i01.jpg

相似文献

[1]
Development of a Machine Learning Algorithm for the Prediction of WHO Grade 1 Meningioma Recurrence.

Cureus. 2025-4-10

[2]
Ki-67 index as a predictive marker of meningioma recurrence following surgical resection.

J Clin Neurosci. 2024-6

[3]
Supervised machine learning algorithms demonstrate proliferation index correlates with long-term recurrence after complete resection of WHO grade I meningioma.

J Neurosurg. 2023-1-1

[4]
WHO Grade I Meningioma Recurrence: Identifying High Risk Patients Using Histopathological Features and the MIB-1 Index.

Front Oncol. 2020-8-28

[5]
Histopathological features predictive of local control of atypical meningioma after surgery and adjuvant radiotherapy.

J Neurosurg. 2018-4-6

[6]
Radiomic signatures of meningiomas using the Ki-67 proliferation index as a prognostic marker of clinical outcomes.

Neurosurg Focus. 2023-6

[7]
Gene Expression Changes Associated With Recurrence After Gross Total Resection of Newly Diagnosed World Health Organization Grade 1 Meningioma.

Neurosurgery. 2025-3-1

[8]
Surgically resected skull base meningiomas demonstrate a divergent postoperative recurrence pattern compared with non-skull base meningiomas.

J Neurosurg. 2016-1-1

[9]
Extent of resection and survival outcomes in World Health Organization grade II meningiomas.

J Neurooncol. 2021-1

[10]
A targeted gene expression biomarker predicts clinic low-risk meningioma recurrence.

Neuro Oncol. 2025-2-10

本文引用的文献

[1]
Assessing the predictive value of Ki-67 and progesterone receptor algorithms for recurrence and disease-free survival in meningiomas.

Ann Diagn Pathol. 2025-4

[2]
Postoperative peritumoral edema is correlated with the prognosis in intracranial meningioma with preoperative peritumoral edema.

Neurosurg Rev. 2024-11-26

[3]
Ki-67 index as a predictive marker of meningioma recurrence following surgical resection.

J Clin Neurosci. 2024-6

[4]
Peritumoral Brain Edema in Relation to Tumor Size Is a Variable That Influences the Risk of Recurrence in Intracranial Meningiomas.

Tomography. 2022-8-8

[5]
The Simpson Grading: Is It Still Valid?

Cancers (Basel). 2022-4-15

[6]
Complications of Radiotherapy and Radiosurgery in the Brain and Spine.

Neurographics (2011). 2018-6

[7]
WHO grade I meningiomas that show regrowth after gamma knife radiosurgery often show 1p36 loss.

Sci Rep. 2021-8-12

[8]
Meningioma: A Review of Epidemiology, Pathology, Diagnosis, Treatment, and Future Directions.

Biomedicines. 2021-3-21

[9]
Value of KI-67/MIB-1 labeling index and simpson grading system to predict the recurrence of who grade I intracranial meningiomas compared to who grade II.

J Clin Neurosci. 2021-4

[10]
Resected WHO grade I meningioma and predictors of local control.

J Neurooncol. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索