Suppr超能文献

利用真实世界数据对计算临床实践指南进行持续评估。

Leveraging real-world data for continuous evaluation of computational clinical practice guidelines.

作者信息

Ebben Kees C W J, de Kroon Cornelis D, Schmeink Channa E, van der Hel Olga L, van Vegchel Thijs, Thissen Michèle, de Hingh Ignace H J T, van der Werf Jurrian

机构信息

Department of Research and Development, Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands

Department of Epidemiology, GROW-school for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.

出版信息

BMJ Health Care Inform. 2025 May 12;32(1):e101333. doi: 10.1136/bmjhci-2024-101333.

Abstract

OBJECTIVES

There is a bidirectional interaction between clinical practice guidelines and clinical care, with each informing the other. Structural signalling of trends in guideline adherence in clinical practice is essential for advanced updates. Recent advances in computable care guidelines allow automated evaluation using real-world registry data. Here, we assess the feasibility by evaluating adherence to Dutch endometrial cancer (EC) guidelines.

METHODS

This retrospective cohort study uses real-world data of EC patients from the Netherlands Cancer Registry (NCR) between January 2010 and May 2022. The Dutch guideline for EC was parsed into clinical decision trees (CDTs). Primary outcome was guideline adherence for multiple (sub)populations, with secondary outcomes encompassing adherence trends, recommendation implementation pace, non-adherent treatment strategies and impact of additional non-guideline-based patient and tumour characteristics on adherence.

RESULTS

The Dutch EC guideline was parsed into 10 CDTs, revealing 22 patient and disease characteristics and 46 interventions. NCR data were mapped to CDT data items. Four CDTs were successfully populated with NCR data, and 21 602 cases were assessed. Adherence levels were computed, which showed a mean adherence of 82.7% (range 44-100%). Three statistically significant trends in adherence were identified: two increasing trends in the 'non-adherent' compared with the 'adherent' group, and one decreasing trend.

DISCUSSION

This study introduces a novel framework for continuously evaluating (non-)adherence to cancer guidelines. Future efforts should focus on the inclusion of health outcome measurements.

CONCLUSION

Through the integration of real-world data with a computer-interpretable guideline, we effectively calculated various facets of adherence to guidelines for EC.

摘要

目的

临床实践指南与临床护理之间存在双向互动,二者相互影响。在临床实践中,对指南依从性趋势进行结构化信号传递对于及时更新至关重要。可计算护理指南的最新进展使得利用真实世界登记数据进行自动评估成为可能。在此,我们通过评估对荷兰子宫内膜癌(EC)指南的依从性来评估其可行性。

方法

这项回顾性队列研究使用了2010年1月至2022年5月期间荷兰癌症登记处(NCR)的EC患者真实世界数据。将荷兰EC指南解析为临床决策树(CDT)。主要结局是多个(亚)人群的指南依从性,次要结局包括依从性趋势、推荐实施速度、不依从治疗策略以及基于指南外的患者和肿瘤特征对依从性的影响。

结果

荷兰EC指南被解析为10个CDT,揭示了22个患者和疾病特征以及46项干预措施。NCR数据被映射到CDT数据项。四个CDT成功填充了NCR数据,并评估了21602例病例。计算了依从性水平,平均依从率为82.7%(范围44 - 100%)。确定了三个具有统计学意义的依从性趋势:与“依从”组相比,“不依从”组有两个上升趋势和一个下降趋势。

讨论

本研究引入了一个用于持续评估对癌症指南依从性(或不依从性)的新框架。未来的工作应侧重于纳入健康结局测量。

结论

通过将真实世界数据与计算机可解释指南相结合,我们有效地计算了EC指南依从性的各个方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16f3/12083447/a2eab1485176/bmjhci-32-1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验