Simula Kristoffer, Christlmaier Evelin Martine Corvid, Filip Maria-Andreea, Haupt J Philip, Kats Daniel, Lopez-Rios Pablo, Alavi Ali
Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany.
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
J Chem Theory Comput. 2025 May 27;21(10):5155-5170. doi: 10.1021/acs.jctc.5c00343. Epub 2025 May 13.
The transcorrelated (TC) method performs a similarity transformation on the electronic Schrödinger equation via Jastrow factorization of the wave function. This has demonstrated significant advancements in computational electronic structure theory by improving basis set convergence and compactifying the description of the wave function. In this work, we introduce a new approach that incorporates pseudopotentials (PPs) into the TC framework, significantly accelerating Jastrow factor optimization and reducing computational costs. Our results for ionization potentials, atomization energies, and dissociation curves of first-row atoms and molecules show that PPs provide chemically accurate descriptions across a range of systems and give guidelines for future theory and applications. The new pseudopotential-based TC method opens possibilities for applying TC to more complex and larger systems, such as transition metals and solid-state systems.
互相关联(TC)方法通过对波函数进行Jastrow因式分解,对电子薛定谔方程进行相似变换。这在计算电子结构理论方面取得了显著进展,通过改善基组收敛性和紧凑化波函数描述。在这项工作中,我们引入了一种新方法,将赝势(PPs)纳入TC框架,显著加速Jastrow因子优化并降低计算成本。我们对第一行原子和分子的电离势、原子化能和解离曲线的计算结果表明,赝势在一系列系统中提供了化学上准确的描述,并为未来的理论和应用提供了指导。基于赝势的新TC方法为将TC应用于更复杂和更大的系统(如过渡金属和固态系统)开辟了可能性。