Suppr超能文献

基于机器学习模型整合的香烟烟雾氧化应激成分筛选

Screening of oxidative stress components of cigarette smoke based on machine learning model integration.

作者信息

Hong Yuxin, Lv Jiayu, Hong Yuxuan, Wang Jiahao, Huang Xuhao, Chen Chao

机构信息

Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.

Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Changzhou Medical Center, Nanjing Medical University, 68 Mid Gehu Road, Changzhou 213164, PR China.

出版信息

Toxicol Appl Pharmacol. 2025 Jul;500:117387. doi: 10.1016/j.taap.2025.117387. Epub 2025 May 11.

Abstract

Cigarette smoke, a complex mixture of more than 7000 chemicals, poses a significant threat to human health, with oxidative stress being an important mechanism in its associated diseases. Traditional methods for assessing the toxicity of cigarette smoke components, such as animal and cell-based assays, are often limited by their high cost and time consumption. This study integrates multiple machine learning algorithms and diverse data sources to construct a robust predictive model for identifying oxidative stress-inducing components in cigarette smoke. Utilizing a multi-dataset, multi-target and multi-algorithm modeling strategy, we developed an integrated model comprising 704 sub-models. These models were trained from 9 datasets related to reactive oxygen species (ROS)-associated pathways. The integrated model demonstrated better performance in external validation compared to individual models, predicting 974 ROS-positive components from 7111 cigarette smoke components. These components were clustered into 10 major classes, providing new insights into the structural diversity of oxidative stress-inducing components in cigarette smoke. Our findings offer a novel approach for enhancing the predictive capability of toxicity models and advancing the understanding of oxidative stress-related toxicity in cigarette smoke components.

摘要

香烟烟雾是一种由7000多种化学物质组成的复杂混合物,对人类健康构成重大威胁,氧化应激是其相关疾病的重要机制。传统的评估香烟烟雾成分毒性的方法,如基于动物和细胞的检测,往往受到高成本和耗时的限制。本研究整合了多种机器学习算法和不同的数据源,构建了一个强大的预测模型,用于识别香烟烟雾中诱导氧化应激的成分。利用多数据集、多靶点和多算法建模策略,我们开发了一个由704个子模型组成的集成模型。这些模型是从9个与活性氧(ROS)相关途径的数据集训练而来的。与单个模型相比,集成模型在外部验证中表现出更好的性能,从7111种香烟烟雾成分中预测出974种ROS阳性成分。这些成分被聚类为10个主要类别,为香烟烟雾中诱导氧化应激成分的结构多样性提供了新的见解。我们的研究结果为提高毒性模型的预测能力和推进对香烟烟雾成分中氧化应激相关毒性的理解提供了一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验