Rossetti Nicolò, Song Weiguo, Schnepel Philipp, Jayaprakash Naveen, Koutsouras Dimitrios A, Fichman Mark, Wong Jason, Levy Todd, Elgohary Mohamed, Qanud Khaled, Giannotti Alice, Barbe Mary F, Chen Frank Liu, Langereis Geert, Datta-Chaudhuri Timir, Mihajlović Vojkan, Zanos Stavros
imec, Eindhoven, Netherlands.
Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research and Northwell Health, Manhasset, NY, USA.
Nat Commun. 2025 May 13;16(1):4419. doi: 10.1038/s41467-025-59595-4.
Vagus nerve stimulation (VNS) is emerging as potential treatment for several chronic diseases. However, limited control of fiber activation, e.g., to promote desired effects over side effects, restricts clinical translation. Towards that goal, we describe a VNS method consisting of intermittent, interferential sinusoidal current stimulation (iCS) through multi-contact epineural cuffs. In experiments in anesthetized swine, iCS elicits nerve potentials and organ responses, from lungs and laryngeal muscles, that are distinct from equivalent non-interferential sinusoidal stimulation. Resection and micro-CT imaging of a previously stimulated nerve, to resolve anatomical trajectories of nerve fascicles, demonstrate that iCS responses are explained by activation of organ-specific fascicles rather than the entire nerve. Physiological responses in swine and activity of single fibers in anatomically realistic, physiologically validated biophysical vagus nerve models indicate that iCS reduces fiber activation at the interference focus. Experimental and modeling results demonstrate that current steering and beat and repetition frequencies predictably shape the spatiotemporal pattern of fiber activation, allowing tunable and precise control of nerve and organ responses. When compared to equivalent sinusoidal stimulation in the same animals, iCS produces reduced levels of a side-effect by larger laryngeal fibers, while attaining similar levels of a desired effect by smaller bronchopulmonary fibers.
迷走神经刺激(VNS)正逐渐成为多种慢性疾病的潜在治疗方法。然而,对纤维激活的控制有限,例如难以在促进预期效果的同时避免副作用,这限制了其临床应用。为实现这一目标,我们描述了一种VNS方法,该方法通过多触点神经外膜袖带进行间歇性、干扰性正弦电流刺激(iCS)。在麻醉猪的实验中,iCS引发的神经电位和肺部及喉肌的器官反应与等效的非干扰性正弦刺激不同。对先前刺激过的神经进行切除和微型计算机断层扫描成像,以解析神经束的解剖轨迹,结果表明iCS反应是由器官特异性神经束的激活而非整个神经的激活所解释。猪的生理反应以及在解剖学上真实、生理学上经过验证的生物物理迷走神经模型中单纤维的活动表明,iCS在干扰焦点处减少了纤维激活。实验和建模结果表明,电流转向以及拍频和重复频率可预测地塑造了纤维激活的时空模式,从而实现对神经和器官反应的可调谐且精确的控制。与同一动物中的等效正弦刺激相比,iCS通过较大的喉纤维产生的副作用水平降低,同时通过较小的支气管肺纤维达到类似水平的预期效果。