文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合个性化形状预测、生物力学建模和可穿戴设备以预测跑步者的骨应力

Integrating personalized shape prediction, biomechanical modeling, and wearables for bone stress prediction in runners.

作者信息

Xiang Liangliang, Gu Yaodong, Deng Kaili, Gao Zixiang, Shim Vickie, Wang Alan, Fernandez Justin

机构信息

Faculty of Sports Science, Ningbo University, Ningbo, China.

Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.

出版信息

NPJ Digit Med. 2025 May 13;8(1):276. doi: 10.1038/s41746-025-01677-0.


DOI:10.1038/s41746-025-01677-0
PMID:40360731
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12075602/
Abstract

Running biomechanics studies the mechanical forces experienced during running to improve performance and prevent injuries. This study presents the development of a digital twin for predicting bone stress in runners. The digital twin leverages a domain adaptation-based Long Short-Term Memory (LSTM) algorithm, informed by wearable sensor data, to dynamically simulate the structural behavior of foot bones under running conditions. Data from fifty participants, categorized as rearfoot and non-rearfoot strikers, were used to create personalized 3D foot models and finite element simulations. Two nine-axis inertial sensors captured three-axis acceleration data during running. The LSTM neural network with domain adaptation proved optimal for predicting bone stress in key foot bones-specifically the metatarsals, calcaneus, and talus-during the mid-stance and push-off phases (RMSE < 8.35 MPa). This non-invasive, cost-effective approach represents a significant advancement for precision health, contributing to the understanding and prevention of running-related fracture injuries.

摘要

跑步生物力学研究跑步过程中所经历的机械力,以提高运动表现并预防损伤。本研究展示了一种用于预测跑步者骨骼应力的数字孪生模型的开发。该数字孪生模型利用基于域适应的长短期记忆(LSTM)算法,并结合可穿戴传感器数据,来动态模拟跑步条件下足部骨骼的结构行为。来自50名参与者的数据,分为后足着地者和非后足着地者,用于创建个性化的3D足部模型和有限元模拟。两个九轴惯性传感器在跑步过程中捕获三轴加速度数据。经证明,具有域适应能力的LSTM神经网络在预测关键足部骨骼(特别是跖骨、跟骨和距骨)在支撑中期和蹬离期的骨骼应力方面表现最佳(均方根误差<8.35兆帕)。这种非侵入性、经济高效的方法代表了精准健康领域的一项重大进展,有助于理解和预防与跑步相关的骨折损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/1f760581460c/41746_2025_1677_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/c9f85a48812b/41746_2025_1677_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/299e9625bc8a/41746_2025_1677_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/1ee37ddb9358/41746_2025_1677_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/fd89515ea8c5/41746_2025_1677_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/24803489071e/41746_2025_1677_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/371b04b1728e/41746_2025_1677_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/1f760581460c/41746_2025_1677_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/c9f85a48812b/41746_2025_1677_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/299e9625bc8a/41746_2025_1677_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/1ee37ddb9358/41746_2025_1677_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/fd89515ea8c5/41746_2025_1677_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/24803489071e/41746_2025_1677_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/371b04b1728e/41746_2025_1677_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d4d/12075602/1f760581460c/41746_2025_1677_Fig7_HTML.jpg

相似文献

[1]
Integrating personalized shape prediction, biomechanical modeling, and wearables for bone stress prediction in runners.

NPJ Digit Med. 2025-5-13

[2]
Do non-rearfoot runners experience greater second metatarsal stresses than rearfoot runners?

J Biomech. 2021-9-20

[3]
Incorporating subject-specific geometry to compare metatarsal stress during running with different foot strike patterns.

J Biomech. 2020-5-22

[4]
Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running.

Hum Mov Sci. 2020-12

[5]
Initial contact and toe off event identification for rearfoot and non-rearfoot strike pattern treadmill running at different speeds.

J Biomech. 2019-4-22

[6]
Trabecular bone in the calcaneus of runners.

PLoS One. 2017-11-15

[7]
Foot tissue stress in chronic ankle instability during the stance phase of cutting.

Med Biol Eng Comput. 2025-5

[8]
Accuracy of self-reported foot strike pattern detection among endurance runners.

Front Sports Act Living. 2024-12-11

[9]
Mechanics of The Medial Gastrocnemius-Tendon Unit in Behaving more Efficiently in Habitual Non-Rearfoot Strikers than in Rearfoot Strikers during Running.

J Sports Sci Med. 2023-9

[10]
Biomechanical Differences of Foot-Strike Patterns During Running: A Systematic Review With Meta-analysis.

J Orthop Sports Phys Ther. 2015-8-24

引用本文的文献

[1]
A Cross-Sectional Study on the Biomechanical Effects of Squat Depth and Movement Speed on Dynamic Postural Stability in Tai Chi.

Life (Basel). 2025-6-18

本文引用的文献

[1]
A hybrid statistical morphometry free-form deformation approach to 3D personalized foot-ankle models.

J Biomech. 2024-5

[2]
Rethinking running biomechanics: a critical review of ground reaction forces, tibial bone loading, and the role of wearable sensors.

Front Bioeng Biotechnol. 2024-4-8

[3]
Integrating an LSTM framework for predicting ankle joint biomechanics during gait using inertial sensors.

Comput Biol Med. 2024-3

[4]
The History and Future of Neuromusculoskeletal Biomechanics.

J Appl Biomech. 2023-9-26

[5]
A Narrative Review of Personalized Musculoskeletal Modeling Using the Physiome and Musculoskeletal Atlas Projects.

J Appl Biomech. 2023-10-1

[6]
Foot Pronation Prediction with Inertial Sensors during Running: A Preliminary Application of Data-Driven Approaches.

J Hum Kinet. 2023-7-15

[7]
A trained neural network model accurately predicts Achilles tendon stress during walking and running based on shear wave propagation.

J Biomech. 2023-8

[8]
Maintaining soldier musculoskeletal health using personalised digital humans, wearables and/or computer vision.

J Sci Med Sport. 2023-6

[9]
Estimation of Lower Extremity Joint Moments and 3D Ground Reaction Forces Using IMU Sensors in Multiple Walking Conditions: A Deep Learning Approach.

IEEE J Biomed Health Inform. 2023-6

[10]
Peak tibial acceleration should not be used as indicator of tibial bone loading during running.

Sports Biomech. 2023-1-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索