Suppr超能文献

增强PI3Kγ抑制剂的发现:一种基于机器学习的虚拟筛选方法,整合药效团、对接和分子描述符。

Enhancing PI3Kγ inhibitor discovery: a machine learning-based virtual screening approach integrating pharmacophores, docking, and molecular descriptors.

作者信息

Jia Lei, Xu Lei, Cai Yanfei, Chen Yun, Jin Jian, Yu Li, Zhu Jingyu

机构信息

School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.

School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China.

出版信息

Mol Divers. 2025 May 13. doi: 10.1007/s11030-025-11216-4.

Abstract

PI3Kγ is a lipid kinase that is expressed primarily in leukocytes and plays a significant role in tumors, inflammation, and autoimmune diseases. Consequently, considerable attention has been given to the development of pharmacological inhibitors of PI3Kγ. Recently, machine learning-based virtual screening approaches have been increasingly applied in new drug discovery research, potentially providing innovative strategies for the development of PI3Kγ inhibitors. Thus, in this study, we developed a naïve Bayesian classification (NBC) model that integrates molecular descriptors, molecular fingerprints, molecular docking, and pharmacophore models for virtual screening of the PI3Kγ protein. The validation results indicated that the optimal model demonstrated significant potential for differentiating between active and inactive compounds, as well as a reliable ability to identify true PI3Kγ inhibitors with defined biological activity. Additionally, the optimal NBC model provided favorable and unfavorable fragments for PI3Kγ inhibitors, which will help guide the design and discovery of novel PI3Kγ inhibitors. Finally, the optimal NBC model was employed to perform virtual screening on the ChEMBL database, resulting in the identification of several compounds with high potential as PI3Kγ inhibitors. We anticipate that the developed machine learning-based virtual screening approach will offer valuable insights and guidance for the development of novel PI3Kγ inhibitors.

摘要

PI3Kγ是一种主要在白细胞中表达的脂质激酶,在肿瘤、炎症和自身免疫性疾病中发挥重要作用。因此,PI3Kγ的药理抑制剂的开发受到了广泛关注。最近,基于机器学习的虚拟筛选方法在新药发现研究中越来越多地被应用,可能为PI3Kγ抑制剂的开发提供创新策略。因此,在本研究中,我们开发了一种朴素贝叶斯分类(NBC)模型,该模型整合了分子描述符、分子指纹、分子对接和药效团模型,用于PI3Kγ蛋白的虚拟筛选。验证结果表明,最优模型在区分活性和非活性化合物方面具有显著潜力,并且具有识别具有明确生物活性的真正PI3Kγ抑制剂的可靠能力。此外,最优NBC模型为PI3Kγ抑制剂提供了有利和不利的片段,这将有助于指导新型PI3Kγ抑制剂的设计和发现。最后,使用最优NBC模型对ChEMBL数据库进行虚拟筛选,结果鉴定出几种具有高潜力的PI3Kγ抑制剂化合物。我们预计,所开发的基于机器学习的虚拟筛选方法将为新型PI3Kγ抑制剂的开发提供有价值的见解和指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验