Yapici Ilkin, Tokur Arda Gorkem, Sever Belgin, Ciftci Halilibrahim, Basak Ayse Nazli, DeMirci Hasan
Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Türkiye.
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye.
Int J Mol Sci. 2025 Apr 29;26(9):4228. doi: 10.3390/ijms26094228.
Superoxide dismutase 1 (SOD1) is a crucial enzyme that protects cells from oxidative damage by converting superoxide radicals into HO and O. This detoxification process, essential for cellular homeostasis, relies on a precisely orchestrated catalytic mechanism involving the copper cation, while the zinc cation contributes to the structural integrity of the enzyme. This study presents the 2.3 Å crystal structure of human SOD1 (PDB ID: 9IYK), revealing an assembly of six homodimers and twelve distinct active sites. The water molecules form a complex hydrogen-bonding network that drives proton transfer and sustains active site dynamics. Our structure also uncovers subtle conformational changes that highlight the intrinsic flexibility of SOD1, which is essential for its function. Additionally, we observe how these dynamic structural features may be linked to pathological mutations associated with amyotrophic lateral sclerosis (ALS). By advancing our understanding of hSOD1's mechanistic intricacies and the influence of water coordination, this study offers valuable insights for developing therapeutic strategies targeting ALS. Our structure's unique conformations and active site interactions illuminate new facets of hSOD1 function, underscoring the critical role of structural dynamics in enzyme catalysis. Moreover, we conducted a molecular docking analysis using SOD1 for potential radical scavengers and Abelson non-receptor tyrosine kinase (c-Abl, Abl1) inhibitors targeting misfolded SOD1 aggregation along with oxidative stress and apoptosis, respectively. The results showed that CHEMBL1075867, a free radical scavenger derivative, showed the most promising docking results and interactions at the binding site of hSOD1, highlighting its promising role for further studies against SOD1-mediated ALS.
超氧化物歧化酶1(SOD1)是一种关键酶,它通过将超氧自由基转化为过氧化氢和氧气来保护细胞免受氧化损伤。这一解毒过程对于细胞内稳态至关重要,依赖于涉及铜阳离子的精确协调的催化机制,而锌阳离子则有助于维持酶的结构完整性。本研究展示了人SOD1的2.3 Å晶体结构(蛋白质数据库ID:9IYK),揭示了由六个同型二聚体和十二个不同活性位点组成的组装体。水分子形成了一个复杂的氢键网络,驱动质子转移并维持活性位点的动态变化。我们的结构还揭示了细微的构象变化,突出了SOD1的内在灵活性,这对其功能至关重要。此外,我们观察到这些动态结构特征可能与肌萎缩侧索硬化症(ALS)相关的病理突变有关。通过增进我们对人SOD1机制复杂性以及水配位影响的理解,本研究为开发针对ALS的治疗策略提供了有价值的见解。我们结构的独特构象和活性位点相互作用揭示了人SOD1功能的新方面,强调了结构动力学在酶催化中的关键作用。此外,我们使用SOD1进行了分子对接分析,分别针对潜在的自由基清除剂和阿贝尔逊非受体酪氨酸激酶(c - Abl,Abl1)抑制剂,这些抑制剂分别针对错误折叠的SOD1聚集以及氧化应激和细胞凋亡。结果表明,自由基清除剂衍生物CHEMBL1075867在人SOD1的结合位点显示出最有前景的对接结果和相互作用,突出了其在针对SOD1介导的ALS的进一步研究中的潜在作用。