Fayyaz Amir, Waqas Muhammad, Fatima Kiran, Naseem Kashif, Asghar Haroon, Ahmed Rizwan, Umar Zeshan Adeel, Baig Muhammad Aslam
Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan.
National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 45320, Pakistan.
Materials (Basel). 2025 May 2;18(9):2092. doi: 10.3390/ma18092092.
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of 5 ns. Nine pelletized alloy samples were prepared, each containing varying chemical concentrations (wt.%) of Al, Cu, Pb, Si, Sn, and Zn-elements commonly used in electrotechnical and thermal functional materials. The laser beam is focused on the target surface, and the resulting emission spectrum is captured within the temperature interval of 9.0×103 to 1.1×104 K using a set of compact Avantes spectrometers. Each spectrometer is equipped with a linear charged-coupled device (CCD) array set at a 2 μs gate delay for spectrum recording. The quantitative analysis was performed using calibration-free laser-induced breakdown spectroscopy (CF-LIBS) under the assumptions of optically thin plasma and self-absorption-free conditions, as well as local thermodynamic equilibrium (LTE). The net normalized integrated intensities of the selected emission lines were utilized for the analysis. The intensities were normalized by dividing the net integrated intensity of each line by that of the aluminum emission line (Al II) at 281.62 nm. The results obtained using CF-LIBS were compared with those from the laser ablation time-of-flight mass spectrometer (LA-TOF-MS), showing good agreement between the two techniques. Furthermore, a random forest technique (RFT) was employed using LIBS spectral data for sample classification. The RFT technique achieves the highest accuracy of ~98.89% using out-of-bag (OOB) estimation for grouping, while a 10-fold cross-validation technique, implemented for comparison, yields a mean accuracy of ~99.12%. The integrated use of LIBS, LA-TOF-MS, and machine learning (e.g., RFT) enables fast, preparation-free analysis and classification of functional metallic materials, highlighting the synergy between quantitative techniques and data-driven methods.
在本文中,我们使用波长为532 nm、脉冲持续时间为5 ns的调Q Nd激光器,对含有金属铝(Al)、铜(Cu)、铅(Pb)、硅(Si)、锡(Sn)和锌(Zn)的功能合金样品进行了分析。制备了九个造粒合金样品,每个样品含有不同化学浓度(重量百分比)的Al、Cu、Pb、Si、Sn和Zn元素,这些元素常用于电工和热功能材料。激光束聚焦在目标表面,使用一组紧凑型阿万提斯光谱仪在9.0×10³至1.1×10⁴ K的温度区间内捕获产生的发射光谱。每个光谱仪都配备了一个线性电荷耦合器件(CCD)阵列,设置为2 μs的门延迟用于光谱记录。在光学薄等离子体、无自吸收条件以及局部热力学平衡(LTE)的假设下,使用无校准激光诱导击穿光谱法(CF-LIBS)进行定量分析。所选发射线的净归一化积分强度用于分析。通过将每条线的净积分强度除以281.62 nm处铝发射线(Al II)的净积分强度来对强度进行归一化。将使用CF-LIBS获得的结果与激光烧蚀飞行时间质谱仪(LA-TOF-MS)的结果进行比较,结果表明这两种技术之间具有良好的一致性。此外,使用LIBS光谱数据采用随机森林技术(RFT)对样品进行分类。RFT技术在使用袋外(OOB)估计进行分组时达到了约98.89%的最高准确率,而用于比较的10倍交叉验证技术产生的平均准确率约为99.12%。LIBS、LA-TOF-MS和机器学习(例如RFT)的综合使用能够对功能金属材料进行快速、无需样品制备的分析和分类,突出了定量技术与数据驱动方法之间的协同作用。