Suppr超能文献

用于延长和可控释放阿霉素的多刺激响应性磁性纳米凝胶-水凝胶纳米复合材料的研制

Development of a Multi-Stimuli-Responsive Magnetic Nanogel-Hydrogel Nanocomposite for Prolonged and Controlled Doxorubicin Release.

作者信息

Rezanejade Bardajee Ghasem, Mahmoodian Hossein, Shafiei Negin, Amiri Bita

机构信息

Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran 19839-63113, Iran.

Department of Chemistry, Payame Noor University, PO Box, Tehran 19395-3697, Iran.

出版信息

Bioconjug Chem. 2025 Aug 20;36(8):1604-1627. doi: 10.1021/acs.bioconjchem.5c00083. Epub 2025 May 14.

Abstract

The development of advanced drug delivery systems that offer precise, controlled, and sustained release of therapeutic agents remains a significant challenge, particularly for applications in oncology where effective targeting and prolonged drug exposure are essential. We synthesized and characterized a multistimuli-responsive magnetic nanogel-hydrogel nanocomposite (MNHNC) designed for controlled and extended drug release, with an emphasis on anticancer drug delivery. The MNHNC was developed by incorporating poly(-isopropylacrylamide--acrylamide) (p(NIPAM--AAm)) nanogels (NGs) within a net-shaped salep-grafted poly(acrylic acid) (PAA) hydrogel matrix, coupled with in situ formation of FeO nanoparticles to introduce magnetic responsiveness and serve as a cross-linking agent. The nanocomposite exhibited notable swelling capabilities, achieving equilibrium values of 706 g/g at pH 9 (25 °C) and 603 g/g at physiological temperature (37 °C, pH 7.4). Additionally, MNHNC demonstrated responsiveness to pH, temperature, and magnetic fields, facilitating controlled drug release. Using doxorubicin (DOX) as a model drug, MNHNC exhibited dual pH sensitivity (NG at pH 5.4 and MNHNC at pH 7.4) and achieved a prolonged release profile of 400 h, significantly surpassing conventional systems, including our previous nanocomposite. Release kinetics followed a super case-II transport mechanism, where swelling primarily governed drug diffusion. Furthermore, the application of a magnetic field enabled fine-tuning of the release rate, offering an additional layer of control. The kinetic study indicated that the drug release from MNHNC followed zero-order kinetics under certain conditions, ensuring a consistent release rate over time, which is highly desirable for maintaining therapeutic efficacy. The Korsmeyer-Peppas model further confirmed the super case-II transport mechanism, highlighting the significant influence of polymer relaxation and swelling on the release process. The Hixson-Crowell model also demonstrated the role of matrix erosion in the drug release mechanism. The results showed a marked improvement in pH and temperature sensitivity compared to previous formulations, enhanced mechanical stability due to the integration of FeO nanoparticles, and the ability to modulate drug release through external magnetic fields. In vitro cytotoxicity assessment using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated the biocompatibility of the MNHNC, with over 95% cell viability in the absence of DOX, confirming its nontoxic nature. Upon DOX loading, MNHNC exhibited a proper anticancer effect against cancer cell lines, showing a dose-dependent reduction in cell viability. The robust mechanical stability, biocompatibility, and multistimuli responsiveness of MNHNC position it as a promising candidate for advanced, targeted drug delivery systems.

摘要

开发能够实现治疗剂精确、可控和持续释放的先进药物递送系统仍然是一项重大挑战,特别是在肿瘤学应用中,有效靶向和延长药物暴露至关重要。我们合成并表征了一种多刺激响应性磁性纳米凝胶-水凝胶纳米复合材料(MNHNC),该材料设计用于可控和延长药物释放,重点是抗癌药物递送。MNHNC是通过将聚(N-异丙基丙烯酰胺-N-丙烯酰胺)(p(NIPAM-N-AAm))纳米凝胶(NGs)掺入网状的角叉菜胶接枝聚(丙烯酸)(PAA)水凝胶基质中,并原位形成FeO纳米颗粒以引入磁响应性并用作交联剂而开发的。该纳米复合材料表现出显著的溶胀能力,在pH 9(25°C)时达到706 g/g的平衡值,在生理温度(37°C,pH 7.4)时达到603 g/g。此外,MNHNC对pH、温度和磁场有响应,有助于控制药物释放。以阿霉素(DOX)为模型药物,MNHNC表现出双重pH敏感性(pH 5.4时为NG,pH 7.4时为MNHNC),并实现了400小时的延长释放曲线,显著超过了包括我们之前的纳米复合材料在内的传统系统。释放动力学遵循超级案例-II传输机制,其中溶胀主要控制药物扩散。此外,施加磁场能够微调释放速率,提供了额外的控制层。动力学研究表明,在某些条件下,MNHNC的药物释放遵循零级动力学,确保随时间保持一致的释放速率,这对于维持治疗效果非常理想。Korsmeyer-Peppas模型进一步证实了超级案例-II传输机制,突出了聚合物松弛和溶胀对释放过程的重大影响。Hixson-Crowell模型也证明了基质侵蚀在药物释放机制中的作用。结果表明,与先前的制剂相比,pH和温度敏感性有显著提高,由于FeO纳米颗粒的整合,机械稳定性增强,并且能够通过外部磁场调节药物释放。使用3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四氮唑溴盐(MTT)测定法进行的体外细胞毒性评估证明了MNHNC的生物相容性,在不存在DOX的情况下细胞活力超过95%,证实了其无毒性质。负载DOX后,MNHNC对癌细胞系表现出适当的抗癌作用,显示出细胞活力的剂量依赖性降低。MNHNC强大的机械稳定性、生物相容性和多刺激响应性使其成为先进的靶向药物递送系统的有前途的候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验