Nasir Md, Weeks William B, Gholami Shahrzad, Marfin Anthony, Alderson Mark, Leader Troy, Taliesin Brian, Dodhia Rahul, Lavista Ferres Juan, Bhat Niranjan
AI for Good Lab, Microsoft, Redmond, Washington, United States of America.
Center for Vaccine Innovation and Access, PATH, Seattle, Washington, United States of America.
PLoS One. 2025 May 14;20(5):e0323384. doi: 10.1371/journal.pone.0323384. eCollection 2025.
Meningococcal meningitis poses a significant public health burden in the meningitis belt region of sub-Saharan Africa. The introduction of the meningococcal PsA-TT vaccine (MenAfriVac®) has successfully eliminated Neisseria meningitidis serogroup A (NmA) cases in the region. However, the duration of post-vaccination immunity and the need for booster doses remain uncertain. To address this knowledge gap, we developed computational models using machine learning techniques to improve the effectiveness of modeling in guiding vaccination strategies for the African meningitis belt. Using serologic data from previous clinical trials of PsA-TT, we proposed a short-term and a long-term model that integrated demographic and medical variables (such as age, height and weight) with previous antibody titer levels and vaccination information to predict NmA antibody titer levels following vaccination. In the short-term model, we found moderately high performance (R-squared = 0.59) for out-of-training-data subjects and even better performance (R squared = 0.83) in the long-term evaluation. Our models estimated the half-life of the vaccine to be 13.9 years for the study population overall, similar to previously reported estimates. Machine learning techniques offer several advantages over previous approaches, as they do not require multiple readings from the same subject, can be rigorously validated using a subset of subject data not used for training. The proposed approach also facilitates the interpretation of the relationship between input variables and antibody levels at a population level. By incorporating subject-specific demographic and medical variables, our models could potentially be used to tailor vaccination schedules to at-risk populations.
脑膜炎球菌性脑膜炎在撒哈拉以南非洲的脑膜炎带地区构成了重大的公共卫生负担。脑膜炎球菌结合疫苗(MenAfriVac®)的引入已成功消除了该地区的A群脑膜炎奈瑟菌(NmA)病例。然而,疫苗接种后免疫的持续时间以及加强剂量的需求仍不确定。为了填补这一知识空白,我们使用机器学习技术开发了计算模型,以提高建模在指导非洲脑膜炎带疫苗接种策略方面的有效性。利用PsA-TT先前临床试验的血清学数据,我们提出了一个短期模型和一个长期模型,该模型将人口统计学和医学变量(如年龄、身高和体重)与先前的抗体滴度水平和疫苗接种信息相结合,以预测接种疫苗后的NmA抗体滴度水平。在短期模型中,我们发现对于未用于训练的数据对象,模型表现中等偏高(决定系数R² = 0.59),而在长期评估中表现更好(R² = 0.83)。我们的模型估计,总体研究人群中疫苗的半衰期为13.9年,与先前报道的估计值相似。与先前的方法相比,机器学习技术具有几个优点,因为它们不需要对同一对象进行多次读数,可以使用未用于训练的一部分对象数据进行严格验证。所提出的方法还便于在人群层面解释输入变量与抗体水平之间的关系。通过纳入特定对象的人口统计学和医学变量,我们的模型有可能用于为高危人群量身定制疫苗接种计划。