Evans Shaun, Howson Sarah A, Booth Andrew E C, Shahmohamadi Elnaz, Lim Matthew, Bacchi Stephen, Jayakumar Mohanaraj, Kamsani Suraya, Fitzgerald John, Thiyagarajah Anand, Emami Mehrdad, Elliott Adrian D, Middeldorp Melissa E, Sanders Prashanthan
Centre for Heart Rhythm Disorders, University of Adelaide, Adelaide, Australia; Royal Adelaide Hospital, Adelaide, Australia.
Royal Adelaide Hospital, Adelaide, Australia.
Heart Rhythm. 2025 May 12. doi: 10.1016/j.hrthm.2025.05.009.
Artificial intelligence (AI) can predict biological age from electrocardiograms (ECGs), which is prognostic for mortality. Widely available and inexpensive, serial ECG measurements may enhance individual risk profiles.
We investigated whether repeated measurement of AI-derived biological age identifies divergent biological and chronological aging and whether it significantly improves all-cause mortality hazard estimates.
This single-center, retrospective cohort study included cardiology patients aged 20-90 years with ≥ 2 ECGs recorded. An AI model estimated the biological age from each ECG, and the biological age gap (difference from chronological age) was calculated. Survival was analyzed using Cox proportional-hazards models; a fixed-hazard model with a single ECG per patient and a time-varying hazards model for multiple ECGs. Models were evaluated with the log-likelihood ratio test, and overall mortality risk predictions were compared with the C-index.
Among 46,960 patients (337,415 ECGs; median follow-up, 4.5 years), the mean biological aging rate was 0.7 ± 4.1 years/y. Increasing biological age gap was associated with a nonlinear mortality hazard increase, whereas negative gaps had a small protective effect. The multiple-ECG model outperformed the single-ECG model with a higher log-likelihood ratio test value (6280 vs 5225) and improved C-index estimates (0.763 vs 0.747; P = .002). The improvement in predictive accuracy increased with more ECGs per patient, plateauing at ≥ 10 ECGs.
Many patients demonstrate biological aging that diverges from chronological aging. AI-derived biological age from a single ECG predicted all-cause mortality, but multiple ECGs significantly increased predictive accuracy. Serial biological age estimates may enhance risk assessment and inform personalized care.
人工智能(AI)可根据心电图(ECG)预测生物学年龄,这对死亡率具有预后价值。系列心电图测量广泛可用且成本低廉,可能会改善个体风险状况。
我们研究了重复测量人工智能得出的生物学年龄是否能识别出不同的生物学衰老和实际年龄衰老,以及它是否能显著改善全因死亡风险估计。
这项单中心回顾性队列研究纳入了年龄在20至90岁之间且记录有≥2份心电图的心脏病患者。一个人工智能模型根据每份心电图估计生物学年龄,并计算生物学年龄差距(与实际年龄的差值)。使用Cox比例风险模型分析生存率;为每位患者使用一份心电图的固定风险模型以及为多份心电图使用的时变风险模型。通过对数似然比检验评估模型,并将总体死亡风险预测与C指数进行比较。
在46960名患者(337415份心电图;中位随访时间为4.5年)中,平均生物学衰老率为0.7±4.1岁/年。生物学年龄差距增大与死亡率风险呈非线性增加相关,而负差距具有较小的保护作用。多份心电图模型在对数似然比检验值较高(6280对5225)的情况下优于单份心电图模型,且C指数估计有所改善(0.763对0.747;P = 0.002)。预测准确性的提高随着每位患者心电图数量的增加而增加,在≥份心电图时趋于平稳。
许多患者表现出与实际年龄衰老不同的生物学衰老。从单份心电图得出的人工智能生物学年龄可预测全因死亡率,但多份心电图显著提高了预测准确性。系列生物学年龄估计可能会改善风险评估并为个性化医疗提供依据。