Liyakath Ali Noor Ul Haq, Mohamed Saleem Mohamed Sadiq, Sathyaseelan Arunprasath, Krishnan Vignesh, Pazhamalai Parthiban, Saj Anandhan Ayyappan, Kim Sang-Jae
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, Republic of Korea.
Small. 2025 Jun;21(25):e2504667. doi: 10.1002/smll.202504667. Epub 2025 May 15.
Integrated electrochemical energy devices with multifunctionality are evolving as an auspicious way to lift up energy technology. However, the challenge is utilizing a single-electrode material for multifunctional applications is essential to minimize the manpower and overall cost of the system. Herein, a novel and cost-effective self-powered aqueous electrochemical energy device (SAEED) is proposed via integrating asymmetric supercapattery (ASD) and water-splitting (WS) devices utilizing Cu₃Mo₂O₉ (CMD) nanostructures on Ni-foam (prepared via hydrothermal method) as a trifunctional electrode. First, the CuMoO/Ni electrode is examined for the supercapacitor, which shows the faradaic-type of charge-storage behavior with a superior specific capacity of 588.88 mAh g. The CuMoOǁgraphene ASD is constructed, which shows high energy storage performance with high device capacitance and energy/power densities and 98% retention capacitance over 5000 cycles. Second, the electrocatalyst behavior of the Cu₃Mo₂O₉/Ni electrode is explored, which reveals impressive HER/OER performance with lower overpotential (HER-120 mV at 10 mA cm⁻²/OER-310 mV at 50 mA cm⁻²) values. As a proof-of-concept, an SAEED was developed that contains a thermoelectric generator, Cu₃Mo₂O₉ǁgraphene ASD, and a beaker-type electrolyzer operating at a voltage of 1.58 V to eliminate power loss and intermittent issues for sustainable and uninterrupted production of H₂.
具有多功能的集成电化学能量装置正在成为提升能源技术的一种 auspicious 方式。然而,挑战在于使用单一电极材料实现多功能应用对于最小化系统的人力和总成本至关重要。在此,通过将不对称超级电容器(ASD)和水分解(WS)装置集成在一起,利用泡沫镍上的 Cu₃Mo₂O₉(CMD)纳米结构(通过水热法制备)作为三功能电极,提出了一种新型且具有成本效益的自供电水性电化学能量装置(SAEED)。首先,对 CuMoO/Ni 电极进行超级电容器测试,其显示出法拉第型电荷存储行为,具有 588.88 mAh g 的优异比容量。构建了 CuMoOǁ石墨烯 ASD,其具有高储能性能,具有高器件电容和能量/功率密度,并且在 5000 次循环中电容保持率为 98%。其次,探索了 Cu₃Mo₂O₉/Ni 电极的电催化行为,其显示出令人印象深刻的 HER/OER 性能,过电位较低(在 10 mA cm⁻² 时 HER 为 120 mV/在 50 mA cm⁻² 时 OER 为 310 mV)。作为概念验证,开发了一种 SAEED,其包含一个热电发电机、Cu₃Mo₂O₉ǁ石墨烯 ASD 和一个烧杯型电解槽,工作电压为 1.58 V,以消除功率损耗和间歇性问题,实现 H₂ 的可持续和不间断生产。