Briddon Charlotte L, Nicoară Maria, Hegedűs Adriana, Thomas Mridul K, Drugă Bogdan
GIMM - Gulbenkian Institute, R. Q.ta Grande 6 2780, Oeiras, Portugal.
Institute of Biological Research Cluj, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, Cluj-Napoca, Cluj County 400015, Romania.
ISME Commun. 2025 Apr 18;5(1):ycaf069. doi: 10.1093/ismeco/ycaf069. eCollection 2025 Jan.
Global warming and ocean acidification are having an unprecedented impact on marine ecosystems, yet we do not yet know how phytoplankton will respond to simultaneous changes in multiple drivers. To better comprehend the combined impact of oceanic warming and acidification, we experimentally estimated how evolution shifted the temperature-CO growth response surfaces of two strains of that were each previously adapted to four different temperature × CO combinations. These adapted strains were then grown under a factorial combination of five temperatures and five CO concentrations to capture the temperature-CO response surfaces for their unacclimated growth rates. The development of the first complete temperature-CO response surfaces showed the optimal CO concentration for growth to be substantially higher than expected future CO levels (~6000 ppm). There was minimal variation in the optimal CO concentration across the tested temperatures, suggesting that temperature will have a greater influence on growth rates compared to enhanced CO. Optimal temperature did not show a unimodal response to CO, either due to the lack of acclimation or the highly efficient CO concentrating mechanisms, which diatoms (e.g. ) can up-/downregulate depending on the CO conditions. We also found that both strains showed evidence of evolutionary shifts as a result of adaptation to temperature and CO. The evolutionary response differed between strains, underscoring how genetic differences (perhaps related to historical regimes) can impact phytoplankton performance. Understanding how a dominant algal species responds to multiple drivers provides insight into real-world scenarios and helps construct theoretical predictions of environmental change.
全球变暖和海洋酸化正在对海洋生态系统产生前所未有的影响,但我们尚不清楚浮游植物将如何应对多种驱动因素的同时变化。为了更好地理解海洋变暖和酸化的综合影响,我们通过实验估计了进化如何改变了两种硅藻菌株的温度-二氧化碳生长响应曲面,这两种菌株先前分别适应了四种不同的温度×二氧化碳组合。然后,将这些适应后的菌株在五种温度和五种二氧化碳浓度的析因组合下培养,以获取它们未适应时生长速率的温度-二氧化碳响应曲面。首个完整的温度-二氧化碳响应曲面的研究表明,生长的最佳二氧化碳浓度远高于预期的未来二氧化碳水平(约6000 ppm)。在测试的温度范围内,最佳二氧化碳浓度的变化极小,这表明与二氧化碳增加相比,温度对生长速率的影响更大。由于缺乏适应性或硅藻(例如)可以根据二氧化碳条件上调/下调的高效二氧化碳浓缩机制,最佳温度对二氧化碳未表现出单峰响应。我们还发现,两种菌株都显示出因适应温度和二氧化碳而发生进化转变的证据。不同菌株的进化反应有所不同,这突出了遗传差异(可能与历史环境有关)如何影响浮游植物的表现。了解一种优势藻类物种如何应对多种驱动因素,有助于深入了解现实世界的情况,并有助于构建环境变化的理论预测。