Suppr超能文献

人工关节感染诊断的概率评分:实用多分析物机器学习模型的开发与验证

Probability Score for the Diagnosis of Periprosthetic Joint Infection: Development and Validation of a Practical Multi-analyte Machine Learning Model.

作者信息

Parr Jim, Thai-Paquette Van, Paranjape Pearl, McLaren Alex, Deirmengian Carl, Toler Krista

机构信息

Data Science and Machine Learning, Zimmer Biomet, Swindon, GBR.

Diagnostics Research and Development, Zimmer Biomet, Claymont, USA.

出版信息

Cureus. 2025 May 13;17(5):e84055. doi: 10.7759/cureus.84055. eCollection 2025 May.

Abstract

Background and objective The diagnosis of periprosthetic joint infection (PJI) relies on established criteria-based systems requiring interpretation and combination of multiple laboratory tests into scoring systems. In routine clinical care, clinicians implement these algorithms to diagnose PJI. Existing literature indicates suboptimal adoption and implementation of these criteria in clinical practice, even among experts. Recognizing the need for accurate PJI diagnosis through proper synthesis of multiple laboratory parameters, this study aimed to develop and validate a machine learning (ML) model that generates a preoperative PJI probability score based solely on synovial fluid (SF) biomarkers within 24 hours. Materials and methods A two-stage ML model was constructed using 104,090 SF samples from 2,923 institutions (2018-2024). First, unsupervised learning identified natural clusters in the data to label samples as "infected" or "not infected." Then, these labels trained a supervised logistic regression model that generated PJI scores (0-100), categorizing cases as PJI positive (> 80), PJI negative (< 20), or equivocal (20-80). The model incorporated 10 SF biomarkers: specimen integrity markers (absorbance at 280 nm, red blood cell count), inflammatory markers (white blood cell count, percentage of neutrophils, SF C-reactive protein), a PJI-specific biomarker (alpha-defensin), and microbial antigen markers (, , , and ). Notably, culture results were excluded to allow for a 24-hour diagnosis. After splitting data into training (n = 83,272) and validation (n = 20,818) cohorts, performance was assessed against modified 2018 International Consensus Meeting criteria, including evaluation with probabilistically reclassified "inconclusive" cases. Results The ML model and resulting PJI score showed high diagnostic accuracy in the validation cohort. The PJI score achieved 99.3% sensitivity and 99.5% specificity versus the clinical reference before reclassification of inconclusive cases and 98.1% sensitivity and 97.6% specificity after probabilistic reclassification. With a disease prevalence of 20.7%, the positive predictive value reached 91.5% and the negative predictive value 99.5%. The model resolved 95% (1,363/1,442) of samples deemed inconclusive by the clinical standard. The analysis identified alpha defensin, percentage of neutrophils, and white blood cell count as the most influential model features. The model performed well in culture-negative infections. Conclusions The ML model and resulting PJI score demonstrated exceptional diagnostic accuracy by leveraging unsupervised SF biomarker pattern clustering. The model substantially reduced diagnostic uncertainty by definitively classifying most inconclusive cases, revealing their natural alignment with infected or non-infected patterns. This performance was achieved without SF culture results, enabling definitive diagnostic information within 24 hours based solely on biomarkers. The clinical significance demonstrates that an ML algorithm can match the diagnostic accuracy of complex clinical standards while transferring analytical complexity from clinicians to laboratories, minimizing the implementation gap that hinders current criteria-based approaches.

摘要

背景与目的

人工关节周围感染(PJI)的诊断依赖于基于既定标准的系统,该系统需要对多项实验室检查结果进行解读并整合到评分系统中。在日常临床护理中,临床医生运用这些算法来诊断PJI。现有文献表明,即使在专家中,这些标准在临床实践中的采用和实施情况也不尽人意。认识到通过正确综合多种实验室参数进行准确PJI诊断的必要性,本研究旨在开发并验证一种机器学习(ML)模型,该模型仅基于滑液(SF)生物标志物在24小时内生成术前PJI概率评分。

材料与方法

使用来自2923个机构(2018 - 2024年)的104,090份SF样本构建了一个两阶段的ML模型。首先,无监督学习识别数据中的自然聚类,将样本标记为“感染”或“未感染”。然后,这些标签用于训练一个监督逻辑回归模型,该模型生成PJI评分(0 - 100),将病例分类为PJI阳性(>80)、PJI阴性(<20)或不确定(20 - 80)。该模型纳入了10种SF生物标志物:样本完整性标志物(280nm处吸光度、红细胞计数)、炎症标志物(白细胞计数、中性粒细胞百分比、SF C反应蛋白)、一种PJI特异性生物标志物(α - 防御素)以及微生物抗原标志物(此处原文未给出具体标志物名称)。值得注意的是,排除培养结果以实现24小时诊断。将数据分为训练队列(n = 83,272)和验证队列(n = 20,818)后,根据修改后的2018年国际共识会议标准评估模型性能,包括对概率重新分类的“不确定”病例进行评估。

结果

ML模型及由此产生的PJI评分在验证队列中显示出较高的诊断准确性。在对不确定病例进行重新分类之前,PJI评分相对于临床参考标准的灵敏度达到99.3%,特异度达到99.5%;在概率重新分类后,灵敏度为98.1%,特异度为97.6%。在疾病患病率为20.7%的情况下,阳性预测值达到91.5%,阴性预测值为99.5%。该模型解决了临床标准认为不确定的95%(1363/1442)的样本。分析确定α - 防御素、中性粒细胞百分比和白细胞计数是最具影响力的模型特征。该模型在培养阴性感染中表现良好。

结论

ML模型及由此产生的PJI评分通过利用无监督的SF生物标志物模式聚类展示了卓越的诊断准确性。该模型通过明确分类大多数不确定病例,显著降低了诊断不确定性,揭示了它们与感染或未感染模式的自然一致性。在没有SF培养结果的情况下实现了这一性能,仅基于生物标志物在24小时内提供了明确的诊断信息。其临床意义表明,ML算法可以达到复杂临床标准的诊断准确性,同时将分析复杂性从临床医生转移到实验室,最大限度地缩小阻碍当前基于标准方法的实施差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3670/12074866/cd059bd89515/cureus-0017-00000084055-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验