Schluessel Sabine, Mueller Benedikt, Tausendfreund Olivia, Rippl Michaela, Deissler Linda, Martini Sebastian, Schmidmaier Ralf, Stoecklein Sophia, Ingrisch Michael, Blaschke Sabine, Brandhorst Gunnar, Spieth Peter, Lehnert Kristin, Heuschmann Peter, de Miranda Susana M Nunes, Drey Michael
Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany.
Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany.
Infection. 2025 May 16. doi: 10.1007/s15010-025-02555-3.
Severe respiratory infections pose a major challenge in clinical practice, especially in older adults. Body composition analysis could play a crucial role in risk assessment and therapeutic decision-making. This study investigates whether obesity or sarcopenia has a greater impact on mortality in patients with severe respiratory infections. The study focuses on the National Pandemic Cohort Network (NAPKON-SUEP) cohort, which includes patients over 60 years of age with confirmed severe COVID-19 pneumonia. An innovative approach was adopted, using pre-trained deep learning models for automated analysis of body composition based on routine thoracic CT scans.
The study included 157 hospitalized patients (mean age 70 ± 8 years, 41% women, mortality rate 39%) from the NAPKON-SUEP cohort at 57 study sites. A pre-trained deep learning model was used to analyze body composition (muscle, bone, fat, and intramuscular fat volumes) from thoracic CT images of the NAPKON-SUEP cohort. Binary logistic regression was performed to investigate the association between obesity, sarcopenia, and mortality.
Non-survivors exhibited lower muscle volume (p = 0.043), higher intramuscular fat volume (p = 0.041), and a higher BMI (p = 0.031) compared to survivors. Among all body composition parameters, muscle volume adjusted to weight was the strongest predictor of mortality in the logistic regression model, even after adjusting for factors such as sex, age, diabetes, chronic lung disease and chronic kidney disease, (odds ratio = 0.516). In contrast, BMI did not show significant differences after adjustment for comorbidities.
This study identifies muscle volume derived from routine CT scans as a major predictor of survival in patients with severe respiratory infections. The results underscore the potential of AI supported CT-based body composition analysis for risk stratification and clinical decision making, not only for COVID-19 patients but also for all patients over 60 years of age with severe acute respiratory infections. The innovative application of pre-trained deep learning models opens up new possibilities for automated and standardized assessment in clinical practice.
严重呼吸道感染在临床实践中构成重大挑战,尤其是在老年人中。身体成分分析在风险评估和治疗决策中可能发挥关键作用。本研究调查肥胖或肌肉减少症对严重呼吸道感染患者死亡率的影响是否更大。该研究聚焦于国家大流行队列网络(NAPKON - SUEP)队列,其中包括确诊为重症COVID - 19肺炎的60岁以上患者。采用了一种创新方法,使用预训练的深度学习模型基于常规胸部CT扫描对身体成分进行自动分析。
该研究纳入了来自57个研究地点的NAPKON - SUEP队列中的157名住院患者(平均年龄70±8岁,41%为女性,死亡率39%)。使用预训练的深度学习模型从NAPKON - SUEP队列的胸部CT图像中分析身体成分(肌肉、骨骼、脂肪和肌内脂肪体积)。进行二元逻辑回归以研究肥胖、肌肉减少症与死亡率之间的关联。
与幸存者相比,非幸存者的肌肉体积较低(p = 0.043),肌内脂肪体积较高(p = 0.041),且体重指数较高(p = 0.031)。在所有身体成分参数中,即使在调整了性别、年龄、糖尿病、慢性肺病和慢性肾病等因素后,逻辑回归模型中调整体重后的肌肉体积仍是死亡率的最强预测指标(比值比 = 0.516)。相比之下,调整合并症后体重指数没有显著差异。
本研究确定常规CT扫描得出的肌肉体积是严重呼吸道感染患者生存的主要预测指标。结果强调了基于人工智能支持的CT身体成分分析在风险分层和临床决策中的潜力,不仅适用于COVID - 19患者,也适用于所有60岁以上患有严重急性呼吸道感染的患者。预训练深度学习模型的创新应用为临床实践中的自动化和标准化评估开辟了新的可能性。