Ramirez Andrew, Orcutt-Jahns Brian T, Pascoe Sean, Abraham Armaan, Remigio Breanna, Thomas Nathaniel, Meyer Aaron S
Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
Cell Syst. 2025 Jun 18;16(6):101294. doi: 10.1016/j.cels.2025.101294. Epub 2025 May 15.
Effective exploration and analysis tools are vital for the extraction of insights from single-cell data. However, current techniques for modeling single-cell studies performed across experimental conditions (e.g., samples) require restrictive assumptions or do not adequately deconvolute condition-to-condition variation from cell-to-cell variation. Here, we report that reduction and insight in single-cell exploration (RISE), an adaptation of the tensor decomposition method PARAFAC2, enables the dimensionality reduction and analysis of single-cell data across conditions. We demonstrate the benefits of RISE across distinct examples of single-cell RNA-sequencing experiments of peripheral immune cells: pharmacologic drug perturbations and systemic lupus erythematosus patient samples. RISE enables associations of gene variation patterns with patients or perturbations while connecting each coordinated change to single cells without requiring cell-type annotations. The theoretical grounding of RISE suggests a unified framework for many single-cell data modeling tasks while providing an intuitive dimensionality reduction approach for multi-sample single-cell studies across biological contexts. A record of this paper's transparent peer review process is included in the supplemental information.
有效的探索和分析工具对于从单细胞数据中提取见解至关重要。然而,当前用于对跨实验条件(例如样本)进行的单细胞研究进行建模的技术需要严格的假设,或者不能充分地从细胞间变异中解卷积条件间变异。在这里,我们报告单细胞探索中的降维和洞察(RISE),它是张量分解方法PARAFAC2的一种改编,能够对跨条件的单细胞数据进行降维和分析。我们通过外周免疫细胞的单细胞RNA测序实验的不同示例证明了RISE的优势:药物扰动和系统性红斑狼疮患者样本。RISE能够将基因变异模式与患者或扰动相关联,同时将每个协调变化与单个细胞联系起来,而无需细胞类型注释。RISE的理论基础为许多单细胞数据建模任务提供了一个统一的框架,同时为跨生物背景的多样本单细胞研究提供了一种直观的降维方法。本文透明的同行评审过程记录包含在补充信息中。