Gao Yanlin, Rong Li, Cui Jing, Cheng Wei, Fu Lin, Fan Guangpu, Wang Haiyan, Yu Jiaqi, Li Zhen, Liu Dinghong, Zhao Sheng, Chen Houliang, Qin Junchao, Tao Miaomiao, Jin Zhechuan, Chen Yu, Li Yuyu
Cardiac and Vascular Center, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui Province, China.
Cardiac and Vascular Center, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui Province, China; Beijing Anzhen Hospital Affiliated to Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
J Control Release. 2025 Jul 10;383:113844. doi: 10.1016/j.jconrel.2025.113844. Epub 2025 May 15.
Thoracic aortic dissection (TAD) is a life-threatening cardiovascular disease characterized by rapid progression and high morbidity. Current efforts to develop effective treatment strategies focus on targeting apoptotic aortic endothelial cells and mitigating inflammation. Here, inspired by the inflammation-neutralizing capacity of functional cells, we present multifunctional biomimetic nanovesicles (MM-LPs) co-assembled from macrophage membranes and synthetic lipids for the targeted delivery of Senkyunolide I (SEI) in TAD treatment. The integration of macrophage membranes endows MM-LPs with the ability to selectively target activated vascular endothelial cells (VECs) while adsorbing proinflammatory cytokines to suppress inflammation. Additionally, these nanoparticles enable the controlled release of SEI, leading to significant anti-apoptotic effects. Leveraging these advantages, MM-LPs effectively mitigated VECs activation, reduced apoptosis, and prevented disease progression and rupture in a BAPN (β-aminopropionitrile monofumarate)-induced mouse model of TAD. Furthermore, this system significantly reduced SEI-associated toxicity and adverse effects on the liver and kidneys. These findings highlight the potential of combining natural macrophage membranes with synthetic lipids to develop a multifunctional biomimetic drug delivery system for treating VECs dysfunction while minimizing drug-related side effects.
胸主动脉夹层(TAD)是一种危及生命的心血管疾病,其特点是进展迅速且发病率高。目前开发有效治疗策略的努力集中在靶向凋亡的主动脉内皮细胞和减轻炎症上。在此,受功能细胞的炎症中和能力启发,我们提出了由巨噬细胞膜和合成脂质共同组装而成的多功能仿生纳米囊泡(MM-LPs),用于在TAD治疗中靶向递送升麻素苷I(SEI)。巨噬细胞膜的整合赋予MM-LPs选择性靶向活化血管内皮细胞(VECs)的能力,同时吸附促炎细胞因子以抑制炎症。此外,这些纳米颗粒能够实现SEI的控释,从而产生显著的抗凋亡作用。利用这些优势,MM-LPs在BAPN(β-氨基丙腈单富马酸盐)诱导的TAD小鼠模型中有效减轻了VECs的活化,减少了细胞凋亡,并预防了疾病进展和破裂。此外,该系统显著降低了SEI相关的毒性以及对肝脏和肾脏的不良反应。这些发现凸显了将天然巨噬细胞膜与合成脂质相结合以开发多功能仿生药物递送系统的潜力,该系统可治疗VECs功能障碍,同时将药物相关的副作用降至最低。