Ushkov Andrei, Machnev Andrey, Kolchanov Denis, Salgals Toms, Alnis Janis, Bobrovs Vjaceslavs, Ginzburg Pavel
Department of Electrical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel.
Light-Matter Interaction Centre, Tel Aviv University, Tel Aviv, 69978, Israel.
Microsyst Nanoeng. 2025 May 16;11(1):91. doi: 10.1038/s41378-025-00951-1.
Optical responsivity grants biomedical capsules additional capabilities, promoting them towards multifunctional theragnostic nanodevices. In this endeavor, screening candidates under conditions that closely resemble in situ environments is crucial for both the initial optimization and the subsequent inspection stages of development and operation. Optical tweezers equipped with dark-field spectroscopy are among the preferable tools for nanoparticle imaging and refractometry. However, the effectiveness of conventional illumination and light collection arrangements for inspecting anisotropic complex inner composition particles is quite limited due to reduced collection angles, which can result in the omission of features in scattering diagrams. Here we introduce an endoscopic dark-field illumination scheme, where light is launched on an optically trapped particle from a single-mode fiber, immersed into a fluid cell. This arrangement disentangles illumination and collection paths, thus allowing the collection of scattered light with a very high numerical aperture. This methodology is applied to vaterite capsules, which are known to possess strong anisotropic responses. Tweezer configuration allows revealing optical properties for different crystallographic orientations of vaterite, which is complex to do otherwise. Furthermore, endoscopic dark-field images reveal the emergence of polarization-dependent long-range photonic nanojets, which are capable of interacting with nearby particles, demonstrating a new pathway for nanojet image formation.
光学响应性赋予生物医学胶囊额外的功能,推动它们向多功能诊疗纳米器件发展。在这一过程中,在与原位环境极为相似的条件下筛选候选材料,对于开发和操作的初始优化及后续检测阶段都至关重要。配备暗场光谱的光镊是用于纳米颗粒成像和折射测量的优选工具之一。然而,由于收集角度减小,传统的照明和光收集装置在检测各向异性复杂内部成分颗粒时的有效性相当有限,这可能导致散射图中的特征被遗漏。在此,我们引入一种内窥式暗场照明方案,即让光从一根浸入流体池的单模光纤发射到被光镊捕获的颗粒上。这种布置使照明和收集路径分离,从而能够以非常高的数值孔径收集散射光。该方法应用于已知具有强烈各向异性响应的球霰石胶囊。镊子配置能够揭示球霰石不同晶体取向的光学特性,否则很难做到这一点。此外,内窥式暗场图像揭示了偏振相关的长程光子纳米射流的出现,这些纳米射流能够与附近颗粒相互作用,展示了纳米射流成像的新途径。