Qutub Mohammad, Hussain Ujban Md, Tatode Amol, Premchandani Tanvi, Khan Rahmuddin, Umekar Milind, Taksande Jayshree, Singanwad Priyanka
Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, 441002, India.
Department of Pharmaceutical Sciences, Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur, Maharashtra, India.
AAPS PharmSciTech. 2025 May 16;26(5):137. doi: 10.1208/s12249-025-03145-0.
Epigallocatechin gallate (EGCG), a bioactive polyphenol derived from Camellia sinensis, exhibits multimodal anticancer activity through mechanisms such as apoptosis induction, metastasis suppression, and chemoresistance reversal. Despite its therapeutic promise, clinical application is constrained by rapid metabolism, poor bioavailability, and inconsistent biodistribution. Recent advances in nanotechnology have enabled the development of innovative delivery systems including pH-responsive nanoparticles, lipid-polymer hybrids, and ligand-functionalized carriers that enhance EGCG stability, tumor targeting, and bioavailability by 3- to fivefold in preclinical models. These platforms also facilitate synergistic co-delivery with chemotherapeutics like doxorubicin, amplifying cytotoxicity and overcoming multidrug resistance. Mechanistically, EGCG modulates oncogenic pathways via NF-κB suppression, caspase activation, and MMP-9 downregulation, demonstrating efficacy across diverse cancer types. However, translational challenges persist, such as nanoparticle toxicity, variable tumor accumulation, and insufficient penetration in hypoxic microenvironments. Regulatory hurdles, including the lack of harmonized global standards for herbal medicinal products, further complicate clinical adoption. To bridge these gaps, future research must prioritize scalable cGMP-compliant manufacturing, rigorous preclinical toxicity profiling, and robust clinical trials to validate safety and efficacy. Addressing these issues could position nanoengineered EGCG as a paradigm-shifting therapy in precision oncology, aligning with ESCOP's mission to integrate evidence-based phytomedicines into conventional cancer care. This review underscores the necessity of interdisciplinary collaboration to standardize phytopreparations, refine regulatory frameworks, and advance biomarker-driven clinical validation, ultimately unlocking the full potential of EGCG in modern therapeutics.
表没食子儿茶素没食子酸酯(EGCG)是一种从茶树中提取的具有生物活性的多酚,通过诱导细胞凋亡、抑制转移和逆转化疗耐药等机制展现出多模式抗癌活性。尽管其具有治疗前景,但临床应用受到快速代谢、低生物利用度和不一致的生物分布的限制。纳米技术的最新进展使得能够开发创新的递送系统,包括pH响应性纳米颗粒、脂质-聚合物杂化物和配体功能化载体,这些系统在临床前模型中可提高EGCG的稳定性、肿瘤靶向性和生物利用度3至5倍。这些平台还促进了与阿霉素等化疗药物的协同共递送,增强了细胞毒性并克服了多药耐药性。从机制上讲,EGCG通过抑制NF-κB、激活半胱天冬酶和下调MMP-9来调节致癌途径,在多种癌症类型中均显示出疗效。然而,转化挑战依然存在,如纳米颗粒毒性、肿瘤蓄积差异以及在缺氧微环境中的穿透不足。监管障碍,包括缺乏统一的草药产品全球标准,进一步使临床应用复杂化。为了弥合这些差距,未来的研究必须优先进行符合cGMP标准的可扩展生产、严格的临床前毒性分析和有力的临床试验,以验证安全性和有效性。解决这些问题可能会使纳米工程化的EGCG成为精准肿瘤学中一种变革性的疗法,符合ESCOP将循证植物药纳入传统癌症治疗的使命。这篇综述强调了跨学科合作的必要性,以规范植物制剂、完善监管框架并推进生物标志物驱动的临床验证,最终释放EGCG在现代治疗中的全部潜力。
Neural Regen Res. 2025-6-19
Nanomedicine (Lond). 2025-1
Eur J Pharm Biopharm. 2023-3
Biotechnol Lett. 2022-3