Al-Ghurabi Ebrahim H, Boumaza Mourad M, Al-Masry Waheed, Asif Mohammad
Department of Chemical Engineering, College of Engineering, King Saud University, 12372, Riyadh, Saudi Arabia.
Sci Rep. 2025 May 17;15(1):17132. doi: 10.1038/s41598-025-00498-1.
Optimizing process parameters is essential for developing high efficacy carbonaceous adsorbents. This study investigated carbon dioxide (CO) capture using activated carbon (AC) synthesized from date-palm leaflets. Key process parameters-pyrolysis temperature, residence time, and KOH-to-carbon (KOH/C) impregnation ratio-were systematically varied to synthesize highly nanoporous AC for enhanced CO uptake. Instead of relying on an intuitive selection of process variables, the optimization process was implemented using Response Surface Methodology (RSM) protocol, which provided a structured and effective strategy for process optimization. Over twenty different AC samples were synthesized and evaluated for their CO adsorption capacities. The optimal conditions, identified as 700 °C, 1.5 h, and a 3:1 (KOH/C) impregnation ratio, yielded AC with exceptional CO uptake capacities of 6.71 mmol/g at 0 °C and 4.214 mmol/g at 25 °C, outperforming most previously reported biomass-derived ACs. This superior performance is attributed to the well-developed nanoporous structure and high nitrogen content of the optimized sample, as confirmed by N adsorption isotherms, elemental analysis, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The optimized AC demonstrated excellent stability over multiple adsorption-desorption cycles. Additionally, a high isosteric enthalpy of adsorption (35 kJ/mol at 0.2 mmol/g) further confirmed preferential CO adsorption at energetically favorable nanopore sites. This study underscores the potential of date-palm leaflets as a sustainable and abundant precursor for synthesizing high-efficacy AC for carbon capture.
优化工艺参数对于开发高效碳质吸附剂至关重要。本研究考察了利用枣椰树叶合成的活性炭(AC)捕集二氧化碳(CO)的情况。系统地改变了关键工艺参数——热解温度、停留时间和氢氧化钾与碳(KOH/C)的浸渍比,以合成具有高度纳米多孔结构的AC,从而增强对CO的吸附。该优化过程并非依赖于对工艺变量的直观选择,而是采用响应面法(RSM)方案实施,该方案为工艺优化提供了一种结构化且有效的策略。合成了二十多种不同的AC样品,并对其CO吸附容量进行了评估。确定最佳条件为700℃、1.5小时和3:1(KOH/C)的浸渍比,在此条件下制得的AC在0℃时具有6.71 mmol/g的优异CO吸附容量,在25℃时为4.214 mmol/g,优于大多数先前报道的生物质衍生AC。通过N吸附等温线、元素分析、扫描电子显微镜(SEM)和傅里叶变换红外光谱(FTIR)证实,这种卓越性能归因于优化样品发达的纳米多孔结构和高氮含量。优化后的AC在多个吸附-解吸循环中表现出优异的稳定性。此外,较高的吸附等量焓(在0.2 mmol/g时为35 kJ/mol)进一步证实了在能量有利的纳米孔位点上对CO的优先吸附。本研究强调了枣椰树叶作为一种可持续且丰富的前驱体用于合成高效碳捕集AC的潜力。