Suppr超能文献

基于脑代谢成像的模型可识别前驱性阿尔茨海默病的认知稳定性。

Brain metabolic imaging-based model identifies cognitive stability in prodromal Alzheimer's disease.

作者信息

Perron Jarrad, Scramstad Carly, Ko Ji Hyun

机构信息

Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, 75 Chancellor's Circle, Winnipeg, MB, R3T 5V6, Canada.

PrairieNeuro Research Centre, Kleysen Institute for Advanced Medicine, Health Sciences Centre, 710 William Avenue, Winnipeg, MB, R3E 3J7, Canada.

出版信息

Sci Rep. 2025 May 17;15(1):17187. doi: 10.1038/s41598-025-02039-2.

Abstract

The recent approval of anti-amyloid pharmaceuticals for the treatment of Alzheimer's disease (AD) has created a pressing need for the ability to accurately identify optimal candidates for anti-amyloid therapy, specifically those with evidence for incipient cognitive decline, since patients with mild cognitive impairment (MCI) may remain stable for several years even with positive AD biomarkers. Using fluorodeoxyglucose PET and biomarker data from 594 ADNI patients, a neural network ensemble was trained to forecast cognition from MCI diagnostic baseline. Training data comprised PET studies of patients with biological AD. The ensemble discriminated between progressive and stable prodromal subjects (MCI with positive amyloid and tau) at baseline with 88.6% area-under-curve, 88.6% (39/44) accuracy, 73.7% (14/19) sensitivity and 100% (25/25) specificity in the test set. It also correctly classified all other test subjects (healthy or AD continuum subjects across the cognitive spectrum) with 86.4% accuracy (206/239), 77.4% sensitivity (33/42) and 88.23% (165/197) specificity. By identifying patients with prodromal AD who will not progress to dementia, our model could significantly reduce overall societal burden and cost if implemented as a screening tool. The model's high positive predictive value in the prodromal test set makes it a practical means for selecting candidates for anti-amyloid therapy and trials.

摘要

近期抗淀粉样蛋白药物被批准用于治疗阿尔茨海默病(AD),这使得准确识别抗淀粉样蛋白治疗的最佳候选者,尤其是那些有早期认知衰退证据的患者变得迫在眉睫,因为即使患有轻度认知障碍(MCI)的患者有阳性AD生物标志物,其病情也可能保持数年稳定。利用来自594名ADNI患者的氟脱氧葡萄糖PET和生物标志物数据,训练了一个神经网络集成模型,以从MCI诊断基线预测认知情况。训练数据包括生物性AD患者的PET研究。该集成模型在基线时区分进展性和稳定的前驱期受试者(淀粉样蛋白和tau蛋白阳性的MCI),在测试集中曲线下面积为88.6%,准确率为88.6%(39/44),灵敏度为73.7%(14/19),特异性为100%(25/25)。它还以86.4%的准确率(206/239)、77.4%的灵敏度(33/42)和88.23%的特异性(165/197)正确分类了所有其他测试受试者(认知谱上的健康或AD连续体受试者)。通过识别不会进展为痴呆的前驱期AD患者,如果将我们的模型作为一种筛查工具实施,可显著减轻总体社会负担和成本。该模型在前驱期测试集中的高阳性预测值使其成为选择抗淀粉样蛋白治疗候选者和试验的实用手段。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2e3/12085605/77ae6c6cef80/41598_2025_2039_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验