Appleton Evan, Tao Jenhan, Liu Songlei, Glass Christopher, Fonseca Gregory, Church George
Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
Cell Rep. 2025 Jun 24;44(6):115726. doi: 10.1016/j.celrep.2025.115726. Epub 2025 May 17.
The creation of induced pluripotent stem cells (iPSCs) has enabled scientists to explore the function, mechanisms, and differentiation processes of many types of cells. One of the fastest and most efficient approaches is transcription factor (TF) over-expression. However, finding the right combination of TFs to over-express to differentiate iPSCs directly into other cell types is a difficult task. Here, we describe a machine-learning (ML) pipeline, called CellCartographer, that uses chromatin accessibility and transcriptomics data to design multiplex TF pooled-screening experiments for cell-type conversions that then may be iteratively refined. We validate this method by differentiating iPSCs into twelve cell types at low efficiency in preliminary screens and iteratively refine our TF combinations to achieve high-efficiency differentiation for six of these cell types in <6 days. Finally, we functionally characterize iPSC-derived cytotoxic T cells (iCytoTs), regulatory T cells (iTregs), type II astrocytes (iAstIIs), and hepatocytes (iHeps) to validate functionally accurate differentiation.
诱导多能干细胞(iPSC)的产生使科学家能够探索多种类型细胞的功能、机制和分化过程。最快且最有效的方法之一是转录因子(TF)过表达。然而,找到合适的TF过表达组合以将iPSC直接分化为其他细胞类型是一项艰巨的任务。在此,我们描述了一种名为CellCartographer的机器学习(ML)流程,该流程利用染色质可及性和转录组学数据来设计用于细胞类型转换的多重TF汇集筛选实验,然后可对其进行迭代优化。我们通过在初步筛选中以低效率将iPSC分化为十二种细胞类型来验证该方法,并迭代优化我们的TF组合,以在不到6天的时间内实现其中六种细胞类型的高效分化。最后,我们对iPSC衍生的细胞毒性T细胞(iCytoTs)、调节性T细胞(iTregs)、II型星形胶质细胞(iAstIIs)和肝细胞(iHeps)进行功能表征,以验证功能上准确的分化。