Tripathi Shrishti, Kumar Rajnish, Debnath Abhijit, Singh Himanshu, Yadav Ranjeet Kumar
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, U.P 201306, India.
Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, U.P 201306, India.
Bioorg Chem. 2025 Jul 15;162:108595. doi: 10.1016/j.bioorg.2025.108595. Epub 2025 May 15.
In this study, novel substituted 2-(5-(2-phenylquinolin-4-lyl)-1,3,4-oxadiazol-2-ylthio)-1-(4-phenylpiperazine-1-yl) ethanones (11a-i) were synthesized and assessed for their anticonvulsant potential. The structures of the synthesized compounds were confirmed through FT-IR, H NMR, C NMR, and mass spectrometry. In vivo, anticonvulsant investigations were performed using the maximal electroshock seizure (MES) and subcutaneous pentylenetetrazol (scPTZ) induced epilepsy animal models. Compounds 11b, 11e, and 11 h demonstrated the most promising action against the induced seizures. To prove that the synthetic derivatives' ability to prevent seizures is not caused by any depression brought on by the use of synthesized derivatives, antidepressant activity has been conducted via a forced swim test (FST). In addition, in silico evaluations comprising ADME predictions, molecular docking, and molecular dynamics simulations on GABA receptors were also performed to determine the pharmacokinetic profiles, binding mode, orientation, and stability of synthesized compounds at the active sites of the targets. The electronic structure of synthesized compounds was also described by density functional theory (DFT) through various reactivity descriptors such as HOMO, LUMO, electron affinity, ionization potential, chemical potential, and global softness. The results of computational studies reinforced the findings of in vivo screening. In summary, this study introduces a promising class of piperazine-1,3,4-oxadiazole-quinoline hybrids with significant antiepileptic properties, warranting further pharmacological exploration for their potential clinical applications.
在本研究中,合成了新型取代的2-(5-(2-苯基喹啉-4-基)-1,3,4-恶二唑-2-基硫代)-1-(4-苯基哌嗪-1-基)乙酮(11a-i),并评估了它们的抗惊厥潜力。通过傅里叶变换红外光谱(FT-IR)、氢核磁共振(H NMR)、碳核磁共振(C NMR)和质谱对合成化合物的结构进行了确证。在体内,使用最大电休克惊厥(MES)和皮下注射戊四氮(scPTZ)诱导的癫痫动物模型进行了抗惊厥研究。化合物11b、11e和11h对诱导的惊厥表现出最有前景的作用。为了证明合成衍生物预防惊厥的能力不是由使用合成衍生物引起的任何抑制作用导致的,通过强迫游泳试验(FST)进行了抗抑郁活性研究。此外,还进行了包括ADME预测、分子对接和GABA受体分子动力学模拟在内的计算机模拟评估,以确定合成化合物在靶点活性位点的药代动力学特征、结合模式、取向和稳定性。还通过密度泛函理论(DFT),利用各种反应性描述符,如最高占据分子轨道(HOMO)、最低未占分子轨道(LUMO)、电子亲和能、电离势、化学势和全局软度,描述了合成化合物的电子结构。计算研究结果强化了体内筛选的结果。总之,本研究引入了一类有前景的哌嗪-1,3,4-恶二唑-喹啉杂合物,具有显著的抗癫痫特性,值得对其潜在的临床应用进行进一步的药理学探索。