Varol Ayşegül, Klauck Sabine M, Lees-Miller Susan P, Efferth Thomas
Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128, Mainz, Germany.
Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, 69120, Heidelberg, Germany.
Chem Biol Interact. 2025 Sep 5;418:111563. doi: 10.1016/j.cbi.2025.111563. Epub 2025 May 16.
Genetic mutations and impaired DNA repair mechanisms in cancer not only facilitate tumor progression but also reduce the effectiveness of chemotherapeutic agents, particularly cisplatin. Combination therapy has emerged as a promising strategy to overcome resistance. Comprehensive transcriptomic analyses, supported by integrated comparative bioinformatics and experimental approaches, are essential for identifying biomarkers and novel therapeutic targets underlying drug resistance. In this study, we performed overall survival and mutation analyses, examining 23 double-strand break repair proteins across more than 7500 tumors spanning 23 distinct cancer types. Our findings identify ATM (ataxia-telangiectasia mutated) as a key protein with the highest mutation frequency. Using CRISPR/Cas9, we investigated the effects of ATM mutations on signalling pathways that influence the cellular response to cisplatin. ATM knockout enhanced cisplatin cytotoxicity by activating alternative cell death pathways, including oxidative stress-induced senescence and necroptosis. Microarray analysis revealed a regulatory interplay between ATM and NRF2 in the activation of oxidative stress-induced senescence. Specifically, ATM knockout promoted senescence by increasing reactive oxygen species (ROS) accumulation and downregulating NRF2 expression. To enhance combination therapy, integrating genetic profiling with advanced tools such as CRISPR/Cas9 to target oxidative stress-induced senescence may provide innovative strategies to overcome drug resistance, thereby advancing personalized cancer treatment. These approaches lay the foundation for the development of personalized cancer therapies tailored to the unique mutational landscape of individual patients, offering promising prospects for improving treatment outcomes.
癌症中的基因突变和受损的DNA修复机制不仅促进肿瘤进展,还会降低化疗药物尤其是顺铂的疗效。联合治疗已成为克服耐药性的一种有前景的策略。在综合比较生物信息学和实验方法的支持下,全面的转录组分析对于识别耐药性背后的生物标志物和新的治疗靶点至关重要。在本研究中,我们进行了总生存期和突变分析,检测了超过7500个肿瘤中的23种双链断裂修复蛋白,这些肿瘤涵盖23种不同的癌症类型。我们的研究结果确定共济失调毛细血管扩张症突变基因(ATM)是突变频率最高的关键蛋白。利用CRISPR/Cas9,我们研究了ATM突变对影响细胞对顺铂反应的信号通路的影响。ATM基因敲除通过激活包括氧化应激诱导的衰老和坏死性凋亡在内的替代性细胞死亡途径增强了顺铂的细胞毒性。微阵列分析揭示了ATM和核因子E2相关因子2(NRF2)在氧化应激诱导的衰老激活中的调节相互作用。具体而言,ATM基因敲除通过增加活性氧(ROS)积累和下调NRF2表达促进衰老。为了加强联合治疗,将基因谱分析与CRISPR/Cas9等先进工具相结合以靶向氧化应激诱导的衰老,可能会提供克服耐药性的创新策略,从而推动个性化癌症治疗。这些方法为开发针对个体患者独特突变格局的个性化癌症疗法奠定了基础,为改善治疗结果提供了广阔前景。