Suppr超能文献

对一氧化氮敏感的鸟苷酸环化酶的药理学激活可改善肥胖诱导的动脉僵硬度。

Pharmacological activation of NO-sensitive guanylyl cyclase ameliorates obesity-induced arterial stiffness.

作者信息

Budbazar Enkhjargal, Balmes Aylin, Elliott Danielle, Peres Tintin Lisette, Kopp Timo, Feil Susanne, Feil Robert, Schäffer Tilman E, Seta Francesca

机构信息

Vascular Biology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, USA.

Institute of Applied Physics, University of Tübingen, Germany.

出版信息

Vascul Pharmacol. 2025 Jun;159:107503. doi: 10.1016/j.vph.2025.107503. Epub 2025 May 16.

Abstract

BACKGROUND & PURPOSE: Arterial stiffness, or loss of elastic compliance in large arteries, is an independent precursor of cardiovascular disease (CVD) [1] and dementia [2] for which currently there are no targeted therapies. We previously discovered that decreases in NO-sensitive guanylyl cyclase (NO-GC), the NO receptor which synthesizes cGMP, and in its target vasodilator-stimulated phosphoprotein (pVASP), lead to increased cytoskeletal actin polymerization in vascular smooth muscle cells (VSMCs) contributing to increased arterial stiffness [3]. In the current study, we tested whether activating NO-GC with an NO-GC activator (cinaciguat) modulates pVASP and cytoskeletal actin polymerization in VSMCs, thereby preventing obesity-induced arterial stiffness.

EXPERIMENTAL APPROACH & KEY RESULTS: Cinaciguat administration (5 mg/kg) to high fat, high sucrose diet (HFHS)-fed mice, our established model of arterial stiffness [4], (1) decreased pulse wave velocity, the in vivo index of arterial stiffness, without affecting blood pressure; (2) increased aortic pVASP levels; and (3) decreased actin polymerization, measured as ratio of filamentous (F) to globular (G) actin, compared to vehicle administration. In cultured VSMCs, cinaciguat (10 μmol/L) increased pVASP levels and decreased the F/G actin ratio at baseline and after stimulation with the cytokine tumor necrosis factor α (TNFα), which we previously showed is significantly increased in the aorta of HFHS-fed mice [4-6]. These effects were abrogated in aortas and VSMCs from mice with smooth muscle-specific cGKI deletion (cGKI), while being mimicked by a cell-permeable cGMP analog (8-Br-cGMP), which also decreased VSMC stiffness in vitro.

CONCLUSIONS & IMPLICATIONS: Collectively, our data strongly support the notion that pharmacological NO-GC activation would be beneficial in decreasing obesity-associated arterial stiffness by decreasing VSMC cytoskeletal actin hyper-polymerization. If translated to humans, NO-GC activators could become a viable approach to clinically treat arterial stiffness, which remains an unmet medical need.

摘要

背景与目的

动脉僵硬度,即大动脉弹性顺应性丧失,是心血管疾病(CVD)[1]和痴呆症[2]的独立先兆,目前尚无针对性治疗方法。我们之前发现,作为合成cGMP的一氧化氮(NO)受体的NO敏感型鸟苷酸环化酶(NO-GC)及其靶标血管舒张刺激磷蛋白(pVASP)水平降低,会导致血管平滑肌细胞(VSMC)中细胞骨架肌动蛋白聚合增加,进而导致动脉僵硬度增加[3]。在本研究中,我们测试了使用NO-GC激活剂(西那吉多)激活NO-GC是否能调节VSMC中的pVASP和细胞骨架肌动蛋白聚合,从而预防肥胖诱导的动脉僵硬度增加。

实验方法与关键结果

在我们已建立的动脉僵硬度模型[4]——高脂高糖饮食(HFHS)喂养的小鼠中给予西那吉多(5mg/kg),(1)降低了脉搏波速度,即动脉僵硬度的体内指标,且不影响血压;(2)提高了主动脉pVASP水平;(3)与给予载体相比,丝状(F)肌动蛋白与球状(G)肌动蛋白的比例所测得的肌动蛋白聚合减少。在培养的VSMC中,西那吉多(10μmol/L)在基线时以及在用细胞因子肿瘤坏死因子α(TNFα)刺激后提高了pVASP水平并降低了F/G肌动蛋白比例,我们之前表明在HFHS喂养小鼠的主动脉中该比例显著增加[4-6]。这些效应在平滑肌特异性cGKI缺失(cGKI)小鼠的主动脉和VSMC中被消除,而可渗透细胞的cGMP类似物(8-溴-cGMP)模拟了这些效应,其在体外也降低了VSMC僵硬度。

结论与意义

总体而言,我们的数据有力地支持了这样一种观点,即通过减少VSMC细胞骨架肌动蛋白过度聚合,药理学上激活NO-GC对降低肥胖相关的动脉僵硬度有益。如果能转化应用于人类,NO-GC激活剂可能成为临床上治疗动脉僵硬度的可行方法,而动脉僵硬度仍是未满足的医疗需求。

相似文献

1
Pharmacological activation of NO-sensitive guanylyl cyclase ameliorates obesity-induced arterial stiffness.
Vascul Pharmacol. 2025 Jun;159:107503. doi: 10.1016/j.vph.2025.107503. Epub 2025 May 16.
2
3
4
Sex differences and role of lysyl oxidase-like 2 in angiotensin II-induced hypertension in mice.
Am J Physiol Heart Circ Physiol. 2024 Sep 1;327(3):H642-H659. doi: 10.1152/ajpheart.00110.2024. Epub 2024 Jul 19.
5
Sertindole for schizophrenia.
Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2.
6
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
8
FAM49B Fragmentation by Asparagine Endopeptidase Promotes Vascular Smooth Muscle Cell Migration in Atherogenesis.
Arterioscler Thromb Vasc Biol. 2025 Aug;45(8):e355-e373. doi: 10.1161/ATVBAHA.125.322536. Epub 2025 Jun 26.
10
Insulin receptors in vascular smooth muscle cells regulate plaque stability of atherosclerosis.
Cardiovasc Res. 2024 Dec 14;120(16):2017-2030. doi: 10.1093/cvr/cvae193.

本文引用的文献

1
2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association.
Circulation. 2025 Feb 25;151(8):e41-e660. doi: 10.1161/CIR.0000000000001303. Epub 2025 Jan 27.
2
Targeting Vascular Stiffness.
Arterioscler Thromb Vasc Biol. 2024 Oct;44(10):2204-2206. doi: 10.1161/ATVBAHA.124.321334. Epub 2024 Aug 8.
3
PAI-1 Regulates the Cytoskeleton and Intrinsic Stiffness of Vascular Smooth Muscle Cells.
Arterioscler Thromb Vasc Biol. 2024 Oct;44(10):2191-2203. doi: 10.1161/ATVBAHA.124.320938. Epub 2024 Jun 13.
4
Role of the NO-GC/cGMP signaling pathway in platelet biomechanics.
Platelets. 2024 Dec;35(1):2313359. doi: 10.1080/09537104.2024.2313359. Epub 2024 Feb 14.
5
Benign prostatic hyperplasia/obstruction ameliorated using a soluble guanylate cyclase activator.
J Pathol. 2022 Apr;256(4):442-454. doi: 10.1002/path.5859. Epub 2022 Feb 15.
7
Visualising and understanding cGMP signals in the cardiovascular system.
Br J Pharmacol. 2022 Jun;179(11):2394-2412. doi: 10.1111/bph.15500. Epub 2021 May 22.
8
BCL11B Regulates Arterial Stiffness and Related Target Organ Damage.
Circ Res. 2021 Mar 19;128(6):755-768. doi: 10.1161/CIRCRESAHA.120.316666. Epub 2021 Feb 3.
9
cGMP-dependent protein kinase I in vascular smooth muscle cells improves ischemic stroke outcome in mice.
J Cereb Blood Flow Metab. 2019 Dec;39(12):2379-2391. doi: 10.1177/0271678X19870583. Epub 2019 Aug 18.
10
Soluble Guanylate Cyclase Stimulators and Activators.
Handb Exp Pharmacol. 2021;264:355-394. doi: 10.1007/164_2018_197.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验