Hammond Claire V, Williams Spencer T, Vega Marleny M, Ao Di, Li Geng, Salati Robert M, Pariser Kayla M, Shourijeh Mohammad S, Habib Ayman W, Patten Carolynn, Fregly Benjamin J
Department of Mechanical Engineering, Rice University, Houston, TX, USA.
Department of Bioengineering, Stanford University, Stanford, CA, USA.
J Neuroeng Rehabil. 2025 May 19;22(1):112. doi: 10.1186/s12984-025-01629-5.
Neuromusculoskeletal injuries including osteoarthritis, stroke, spinal cord injury, and traumatic brain injury affect roughly 19% of the U.S. adult population. Standardized interventions have produced suboptimal functional outcomes due to the unique treatment needs of each patient. Strides have been made to utilize computational models to develop personalized treatments, but researchers and clinicians have yet to cross the "valley of death" between fundamental research and clinical usefulness. This article introduces the Neuromusculoskeletal Modeling (NMSM) Pipeline, two MATLAB-based toolsets that add Model Personalization and Treatment Optimization functionality to OpenSim. The two toolsets facilitate computational design of individualized treatments for neuromusculoskeletal impairments through the use of personalized neuromusculoskeletal models and predictive simulation. The Model Personalization toolset contains four tools for personalizing 1) joint structure models, 2) muscle-tendon models, 3) neural control models, and 4) foot-ground contact models. The Treatment Optimization toolset contains three tools for predicting and optimizing a patient's functional outcome for different treatment options using a patient's personalized neuromusculoskeletal model and direct collocation optimal control methods. Support for user-defined cost, constraint, and model modification functions facilitate simulation of a vast number of possible treatments. An NMSM Pipeline use case is presented for an individual post-stroke with impaired walking function, where the goal was to predict how the subject's neural control could be changed to improve walking speed without increasing metabolic cost. First the Model Personalization toolset was used to develop a personalized neuromusculoskeletal model of the subject starting from a generic OpenSim full-body model and experimental walking data (video motion capture, ground reaction, and electromyography) collected from the subject at his self-selected speed. Next the Treatment Optimization toolset was used with the personalized model to predict how the subject could recruit existing muscle synergies more effectively to reduce muscle activation disparities between the paretic and non-paretic legs. The software predicted that the subject could increase his walking speed by 60% without increasing his metabolic cost per unit time by modifying existing muscle synergy recruitment. This hypothetical treatment demonstrates how NMSM Pipeline tools could allow researchers working collaboratively with clinicians to develop personalized neuromusculoskeletal models of individual patients and to perform predictive simulations for designing personalized treatments that maximize a patient's post-treatment functional outcome.
包括骨关节炎、中风、脊髓损伤和创伤性脑损伤在内的神经肌肉骨骼损伤影响着约19%的美国成年人口。由于每个患者独特的治疗需求,标准化干预产生的功能结果并不理想。人们已努力利用计算模型来开发个性化治疗方法,但研究人员和临床医生尚未跨越基础研究与临床实用性之间的“死亡谷”。本文介绍了神经肌肉骨骼建模(NMSM)管道,这是两个基于MATLAB的工具集,为OpenSim添加了模型个性化和治疗优化功能。这两个工具集通过使用个性化的神经肌肉骨骼模型和预测模拟,促进了针对神经肌肉骨骼损伤的个性化治疗的计算设计。模型个性化工具集包含四个用于个性化的工具:1)关节结构模型;2)肌腱模型;3)神经控制模型;4)足底与地面接触模型。治疗优化工具集包含三个工具,用于使用患者的个性化神经肌肉骨骼模型和直接配置最优控制方法,预测和优化患者在不同治疗方案下的功能结果。对用户定义的成本、约束和模型修改函数的支持有助于模拟大量可能的治疗方法。本文展示了一个针对中风后行走功能受损个体的NMSM管道用例,其目标是预测如何改变受试者的神经控制以提高步行速度,同时不增加代谢成本。首先,使用模型个性化工具集,从通用的OpenSim全身模型和以受试者自选速度收集的实验性行走数据(视频动作捕捉、地面反作用力和肌电图)开始,开发该受试者的个性化神经肌肉骨骼模型。接下来,使用治疗优化工具集和个性化模型,预测受试者如何更有效地募集现有的肌肉协同作用,以减少患侧腿和非患侧腿之间的肌肉激活差异。该软件预测,通过修改现有的肌肉协同作用募集方式,受试者可以在不增加单位时间代谢成本的情况下,将步行速度提高60%。这个假设性治疗展示了NMSM管道工具如何使研究人员与临床医生合作,为个体患者开发个性化的神经肌肉骨骼模型,并进行预测模拟,以设计出能使患者治疗后功能结果最大化地个性化治疗方案。