Saund Simran S, Gish Melissa K, Choate Jeremiah, Le Trung H, Marinescu Smaranda C, Neale Nathan R
Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
ACS Mater Au. 2025 Apr 14;5(3):569-579. doi: 10.1021/acsmaterialsau.5c00010. eCollection 2025 May 14.
We explore strategies for enhancing the electronic interaction between silicon nanocrystals (Si NCs) and surface-tethered molecular Re electrocatalysts ([Re]) as models for CO-reducing photocathodes. Using density functional theory (DFT) combined with electrochemical, spectroscopic, and photocatalytic measurements, we determine that the intrinsic Si (Si) NC conduction band energy in Si-[Re] assemblies is below the [Re] lowest unoccupied molecular orbital (LUMO) and singly occupied molecular orbital energies even for strongly quantum-confined 3.0-3.9 nm diameter hydrogen- and methyl-terminated Si NCs, respectively. We computationally analyze design strategies to align the semiconductor conduction band edge and electrocatalyst frontier molecular orbitals by varying the Si NC size, introducing boron as a dopant in the Si NC, and modifying the attachment chemistry to the [Re] complex aryl ligand framework. Our DFT analysis identifies a target hybrid structure featuring B-doped silicon (B:Si) NCs and a direct bond between a surface atom and an sp-hybridized carbon of the electrocatalyst bipyridine aryl ring ligand (B:Si-C[Re]). We synthesize the B:Si-C[Re] NC assembly and find evidence of direct hybridization between the B:Si NC and the surface [Re] electrocatalyst LUMO using electrochemical measurements and transient absorption spectroscopy. This work provides a blueprint for the design of new Si photocathode-molecular electrocatalyst hybrids for CO reduction and related fuel-forming photocatalytic conversions.
我们探索了增强硅纳米晶体(Si NCs)与表面连接的分子铼电催化剂([Re])之间电子相互作用的策略,以此作为还原一氧化碳光阴极的模型。结合密度泛函理论(DFT)以及电化学、光谱学和光催化测量,我们确定,即使对于分别具有强量子限制效应、直径为3.0 - 3.9 nm的氢端基和甲基端基的硅纳米晶体,在Si-[Re]组装体中,本征硅(Si)纳米晶体的导带能量分别低于[Re]的最低未占分子轨道(LUMO)和单占分子轨道能量。我们通过改变硅纳米晶体的尺寸、在硅纳米晶体中引入硼作为掺杂剂以及修改与[Re]配合物芳基配体框架的连接化学,对使半导体导带边缘与电催化剂前沿分子轨道对齐的设计策略进行了计算分析。我们的DFT分析确定了一种目标杂化结构,其特征为硼掺杂的硅(B:Si)纳米晶体以及表面原子与电催化剂联吡啶芳基环配体的sp杂化碳之间的直接键合(B:Si-C[Re])。我们合成了B:Si-C[Re]纳米晶体组装体,并通过电化学测量和瞬态吸收光谱法找到了B:Si纳米晶体与表面[Re]电催化剂LUMO之间直接杂化的证据。这项工作为设计用于还原一氧化碳及相关燃料形成光催化转化的新型硅光阴极 - 分子电催化剂杂化物提供了蓝图。