文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

壳聚糖纳米颗粒DNA疫苗对……的免疫效果

Immune efficacy of chitosan nanoparticle DNA vaccine against .

作者信息

Qiang G, Yajing L, Shiji Z, Jiayu T, Jingwen L

机构信息

Department of Bioengineering, Faculty of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.

MSc Student in Microbiology, Department of Bioengineering, Faculty of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.

出版信息

Iran J Vet Res. 2025;25(4):353-360. doi: 10.22099/ijvr.2024.49964.7371.


DOI:10.22099/ijvr.2024.49964.7371
PMID:40386097
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12085210/
Abstract

BACKGROUND: is a zoonotic pathogen that poses a threat to human and animal health. However, no vaccine exists for controlling this bacterium. AIMS: This study aimed to evaluate the immune efficacy of a chitosan nanoparticle DNA vaccine of the gene from . METHODS: The naked DNA vaccine based on the gene of was constructed. Then, the chitosan nanoparticle DNA vaccine of the gene was prepared and the shape, size, encapsulation efficiency, stability, and ability of anti-DNA enzyme degradation were detected. Chickens were divided into five groups, namely the naked DNA vaccine group (poprH group), chitosan nanoparticle DNA vaccine group (CpoprH group), outer membrane protein vaccine group (OMP group), inactive vaccine group, and PBS group. After being vaccinated with corresponding vaccines, the levels of serum antibodies, lymphocyte proliferation assays, interferon-γ (IFN-γ), interleukin-2 (IL-2), and interleukin-4 (IL-4) concentrations were detected. Groups of chickens were challenged with live virulent 2 weeks after the last vaccination and the survival numbers were counted until day 15 post challenge. Then, the protective rates were calculated. RESULTS: The particle size of the chitosan nanoparticle DNA vaccine was approximately 200 nm and close to spherical; the encapsulation efficiency was 95.88%, and it could effectively resist degradation by DNase. Following vaccination, serum antibodies, stimulation index (SI) value, and concentrations of IFN-γ, IL-2, and IL-4 in chickens immunized with the chitosan nanoparticle DNA vaccine were significantly higher than those that were vaccinated with the naked DNA vaccine (P<0.05). The protective rates of poprH, CoprH, OMP vaccine, and inactive vaccine groups were 55%, 75%, 75%, and 90%, respectively. CONCLUSION: Chitosan could significantly enhance the immune response and protection provided by the naked DNA vaccine of the gene.

摘要

背景:是一种对人类和动物健康构成威胁的人畜共患病原体。然而,目前尚无用于控制这种细菌的疫苗。 目的:本研究旨在评估来自的基因的壳聚糖纳米颗粒DNA疫苗的免疫效果。 方法:构建基于基因的裸DNA疫苗。然后,制备基因的壳聚糖纳米颗粒DNA疫苗,并检测其形状、大小、包封率、稳定性和抗DNA酶降解能力。将鸡分为五组,即裸DNA疫苗组(poprH组)、壳聚糖纳米颗粒DNA疫苗组(CpoprH组)、外膜蛋白疫苗组(OMP组)、灭活疫苗组和PBS组。用相应疫苗接种后,检测血清抗体水平、淋巴细胞增殖试验、干扰素-γ(IFN-γ)、白细胞介素-2(IL-2)和白细胞介素-4(IL-4)浓度。在最后一次接种后2周,用强毒攻击各组鸡,统计存活数直至攻毒后第15天。然后计算保护率。 结果:壳聚糖纳米颗粒DNA疫苗的粒径约为200nm,接近球形;包封率为95.88%,能有效抵抗DNase降解。接种后,壳聚糖纳米颗粒DNA疫苗免疫的鸡的血清抗体、刺激指数(SI)值以及IFN-γ、IL-2和IL-4浓度均显著高于裸DNA疫苗免疫的鸡(P<0.05)。poprH、CprH、OMP疫苗和灭活疫苗组的保护率分别为55%、75%、75%和90%。 结论:壳聚糖可显著增强基因裸DNA疫苗的免疫反应和保护作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/29677e4da927/ijvr-25-353-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/21ea43364d61/ijvr-25-353-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/6625d328ee7a/ijvr-25-353-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/b9c6eff55df9/ijvr-25-353-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/e942290ba08c/ijvr-25-353-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/ec951c68526d/ijvr-25-353-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/b26bfaa12f13/ijvr-25-353-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/4f1b56db597b/ijvr-25-353-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/34ece247216e/ijvr-25-353-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/29677e4da927/ijvr-25-353-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/21ea43364d61/ijvr-25-353-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/6625d328ee7a/ijvr-25-353-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/b9c6eff55df9/ijvr-25-353-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/e942290ba08c/ijvr-25-353-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/ec951c68526d/ijvr-25-353-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/b26bfaa12f13/ijvr-25-353-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/4f1b56db597b/ijvr-25-353-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/34ece247216e/ijvr-25-353-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1033/12085210/29677e4da927/ijvr-25-353-g009.jpg

相似文献

[1]
Immune efficacy of chitosan nanoparticle DNA vaccine against .

Iran J Vet Res. 2025

[2]
Construction of a ptfA chitosan nanoparticle DNA vaccine against Pasteurella multocida and the immune response in chickens.

Vet J. 2018-1

[3]
Extracellular polysaccharide of Lactobacillus plantarum enhance immune efficacy of oprH gene recombinant subunit vaccine from Pseudomonas aeruginosa.

J Vet Med Sci. 2023-11-18

[4]
Immune efficacy of DNA vaccines based on oprL and oprF genes of Pseudomonas aeruginosa in chickens.

Poult Sci. 2018-12-1

[5]
Immune Efficacy of different immunization doses of divalent combination DNA vaccine pOPRL+pOPRF of Pseudomonas aeruginosa.

J Vet Med Sci. 2021-12-23

[6]
Efficacy of chitosan-based nanoparticle vaccine administered to broiler birds challenged with Salmonella.

PLoS One. 2020-4-24

[7]
Immune Response to Enteritidis Infection in Broilers Immunized Orally With Chitosan-Based Subunit Nanoparticle Vaccine.

Front Immunol. 2020

[8]
Improved cellular immune response induced by intranasal boost immunization with chitosan coated DNA vaccine against H9N2 influenza virus challenge.

Microb Pathog. 2024-10

[9]
Nanoconjugation of bicistronic DNA vaccine against Edwardsiella tarda using chitosan nanoparticles: Evaluation of its protective efficacy and immune modulatory effects in Labeo rohita vaccinated by different delivery routes.

Vaccine. 2018-3-12

[10]
Mannose-modified chitosan microspheres enhance OprF-OprI-mediated protection of mice against Pseudomonas aeruginosa infection via induction of mucosal immunity.

Appl Microbiol Biotechnol. 2014-11-11

本文引用的文献

[1]
Immune responses and protective efficacy of a trivalent combination DNA vaccine based on oprL, oprF and flgE genes of Pseudomonas aeruginosa.

Vet Med (Praha). 2022-11-10

[2]
Enhanced protective efficacy of an OprF/PcrV bivalent DNA vaccine against Pseudomonas aeruginosa using a hydrogel delivery system.

Biomed Pharmacother. 2024-3

[3]
Establishment of portable Pseudomonas aeruginosa detection platform based on one-tube CRISPR/Cas12a combined with recombinase polymerase amplification technology.

Clin Chim Acta. 2024-2-1

[4]
: Infections and novel approaches to treatment "Knowing the enemy" the threat of and exploring novel approaches to treatment.

Infect Med (Beijing). 2023-5-26

[5]
Immunogenicity of a silica nanoparticle-based SARS-CoV-2 vaccine in mice.

Eur J Pharm Biopharm. 2023-11

[6]
PLGA nanoparticles containing Intimin-Flagellin fusion protein for E. coli O157:H7 nano-vaccine.

J Immunol Methods. 2023-9

[7]
An X-ray inactivated vaccine against Pseudomonas aeruginosa Keratitis in mice.

Vaccine. 2023-7-19

[8]
A chimeric vaccine targeting Pseudomonas aeruginosa virulence factors protects mice against lethal infection.

Microb Pathog. 2023-5

[9]
Effect of the pseudomonas metabolites HQNO on the Toxoplasma gondii RH strain in vitro and in vivo.

Int J Parasitol Drugs Drug Resist. 2023-4

[10]
Aptamer-based biosensors for Pseudomonas aeruginosa detection.

Mol Cell Probes. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索