文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测和理解艾滋病毒护理脱失的增强语言模型:坦桑尼亚的一个案例研究。

Enhanced Language Models for Predicting and Understanding HIV Care Disengagement: A Case Study in Tanzania.

作者信息

Wei Waverly, Shao Junzhe, Lyu Rita Qiuran, Hemono Rebecca, Ma Xinwei, Giorgio Joseph, Zheng Zeyu, Ji Feng, Zhang Xiaoya, Katabaro Emmanuel, Mlowe Matilda, Sabasaba Amon, Lister Caroline, Shabani Siraji, Njau Prosper, McCoy Sandra I, Wang Jingshen

机构信息

University of Southern California.

University of California, Berkeley.

出版信息

Res Sq. 2025 May 8:rs.3.rs-6608559. doi: 10.21203/rs.3.rs-6608559/v1.


DOI:10.21203/rs.3.rs-6608559/v1
PMID:40386417
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12083686/
Abstract

SUMMARY: Sustained engagement in HIV care and adherence to antiretroviral therapy (ART) are essential for achieving the UNAIDS "95-95-95" targets. Despite increased ART access, disengagement from care remains a significant issue, particularly in sub-Saharan Africa. Traditional machine learning (ML) models have shown moderate success in predicting care disengagement, which would enable early intervention. We develop an enhanced large language model (LLM) fine-tuned with electronic medical records (EMRs) to predict people at risk of disengaging from HIV care in Tanzania and to provide interpretative insights into modifiable risk factors. METHODS: We developed a novel AI model by enhancing a pre-trained LLM (LLaMA 3.1, an open-source pre-trained LLM released by Meta) using routinely collected EMRs from Tanzania's National HIV Care and Treatment Program from January 1, 2018, to June 30, 2023 (4,809,765 records for 261,192 people) to identify people at risk of disengaging from HIV care or developing adverse outcomes. Outcomes included risk of ART non-adherence, non-suppressed viral load, and loss to follow-up. Models were evaluated internally (Kagera region) and externally (Geita region), with performance compared against state-of-art ML models and zero-shot LLMs. Additionally, a team of HIV physicians in Tanzania assessed the LLM's predictions along with LLM provided justifications for a subset of patient records to evaluate their clinical relevance and reasoning. FINDINGS: The enhanced LLMs consistently outperformed the supervised ML model and zero-shot LLMs across all outcomes in both internal and external validation datasets. When focusing on the 25% of PLHIV predicted as most likely to lost-to-follow-up (LTFU), the model correctly identified 78% (2,515 of 3,224) of people living with HIV (PLHIV) genuinely at risk in internal validation and 73% (7,105 of 9,733) in external validation. Attention score analysis indicated that the enhanced LLM focused on keywords such as gaps in follow-up care and ART adherence. The human expert evaluation showed alignment between clinician assessments and the LLM's predictions in 65% of cases, with experts finding the model's justifications reasonable and clinically relevant in 92.3% of aligned cases. INTERPRETATION: If implemented in HIV clinics, this LLM-based AI model could help allocate resources efficiently and deliver targeted interventions, improving retention in care and advancing the UNAIDS "95-95-95" targets. By functioning like a clinician-analyzing patient summaries, predicting risks, and offering reasoning-the enhanced LLM could be integrated into clinical workflows to complement human expertise, facilitating timely interventions and informed decision-making. If implemented widely, this human-AI collaboration has the potential to improve health outcomes for people living with HIV and reduce onward transmission. FUNDING: The study was supported by a grant from the US National Institutes of Health (NIH): NIH NIMH 1R01MH125746.

摘要

摘要:持续参与艾滋病护理并坚持抗逆转录病毒疗法(ART)对于实现联合国艾滋病规划署的“95-95-95”目标至关重要。尽管获得抗逆转录病毒疗法的机会有所增加,但脱离护理仍然是一个重大问题,尤其是在撒哈拉以南非洲地区。传统的机器学习(ML)模型在预测护理脱离方面已取得一定成功,这将有助于早期干预。我们开发了一种通过电子病历(EMR)进行微调的增强型大语言模型(LLM),以预测坦桑尼亚有脱离艾滋病护理风险的人群,并提供对可改变风险因素的解释性见解。 方法:我们通过使用从2018年1月1日至2023年6月30日坦桑尼亚国家艾滋病护理和治疗计划中常规收集的电子病历(4,809,765条记录,涉及261,192人)来增强预训练的大语言模型(LLaMA 3.1,Meta发布的开源预训练大语言模型),开发了一种新型人工智能模型,以识别有脱离艾滋病护理或出现不良后果风险的人群。结果包括抗逆转录病毒疗法不依从风险、病毒载量未被抑制以及失访风险。模型在内部(卡盖拉地区)和外部(基塔地区)进行了评估,并将性能与最先进的机器学习模型和零样本大语言模型进行了比较。此外,坦桑尼亚的一组艾滋病医生评估了大语言模型的预测结果以及大语言模型为一部分患者记录提供的理由,以评估其临床相关性和推理能力。 结果:在内部和外部验证数据集中,增强型大语言模型在所有结果上均始终优于监督式机器学习模型和零样本大语言模型。当关注预测为最有可能失访(LTFU)的25%的艾滋病毒感染者时,该模型在内部验证中正确识别出78%(3,224人中的2,515人)真正有风险的艾滋病毒感染者(PLHIV),在外部验证中正确识别出73%(9,733人中的7,105人)。注意力分数分析表明,增强型大语言模型关注诸如后续护理和抗逆转录病毒疗法依从性方面的差距等关键词。人类专家评估显示,在65%的病例中,临床医生的评估与大语言模型的预测结果一致,在92.3%的一致病例中,专家认为该模型的理由合理且与临床相关。 解读:如果在艾滋病诊所实施,这种基于大语言模型的人工智能模型可以帮助有效分配资源并提供有针对性的干预措施,提高护理留存率并推进联合国艾滋病规划署的“95-95-95”目标。通过像临床医生一样分析患者摘要、预测风险并提供推理,增强型大语言模型可以整合到临床工作流程中以补充人类专业知识,促进及时干预和明智决策。如果广泛实施,这种人机协作有可能改善艾滋病毒感染者的健康结果并减少病毒传播。 资金:该研究得到了美国国立卫生研究院(NIH)的资助:NIH NIMH 1R01MH125746。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/12083686/65d49b85b88e/nihpp-rs6608559v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/12083686/adabf1125074/nihpp-rs6608559v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/12083686/319c365ea7a5/nihpp-rs6608559v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/12083686/23fbeefa7166/nihpp-rs6608559v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/12083686/65d49b85b88e/nihpp-rs6608559v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/12083686/adabf1125074/nihpp-rs6608559v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/12083686/319c365ea7a5/nihpp-rs6608559v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/12083686/23fbeefa7166/nihpp-rs6608559v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/12083686/65d49b85b88e/nihpp-rs6608559v1-f0004.jpg

相似文献

[1]
Enhanced Language Models for Predicting and Understanding HIV Care Disengagement: A Case Study in Tanzania.

Res Sq. 2025-5-8

[2]
PH-LLM: Public Health Large Language Models for Infoveillance.

medRxiv. 2025-2-10

[3]
Prevention of adverse HIV treatment outcomes: machine learning to enable proactive support of people at risk of HIV care disengagement in Tanzania.

BMJ Open. 2024-9-24

[4]
Leveraging Large Language Models for Precision Monitoring of Chemotherapy-Induced Toxicities: A Pilot Study with Expert Comparisons and Future Directions.

Cancers (Basel). 2024-8-12

[5]
Assessing Retrieval-Augmented Large Language Model Performance in Emergency Department ICD-10-CM Coding Compared to Human Coders.

medRxiv. 2024-10-17

[6]
Quality of Large Language Model Responses to Radiation Oncology Patient Care Questions.

JAMA Netw Open. 2024-4-1

[7]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[8]
A dataset and benchmark for hospital course summarization with adapted large language models.

J Am Med Inform Assoc. 2025-3-1

[9]
Generative Large Language Model-Powered Conversational AI App for Personalized Risk Assessment: Case Study in COVID-19.

JMIR AI. 2025-3-27

[10]
Enhancing semantical text understanding with fine-tuned large language models: A case study on Quora Question Pair duplicate identification.

PLoS One. 2025-1-10

本文引用的文献

[1]
Testing and Evaluation of Health Care Applications of Large Language Models: A Systematic Review.

JAMA. 2025-1-28

[2]
Prevention of adverse HIV treatment outcomes: machine learning to enable proactive support of people at risk of HIV care disengagement in Tanzania.

BMJ Open. 2024-9-24

[3]
AttentionViz: A Global View of Transformer Attention.

IEEE Trans Vis Comput Graph. 2024-1

[4]
Historical visit attendance as predictor of treatment interruption in South African HIV patients: Extension of a validated machine learning model.

PLOS Glob Public Health. 2023-7-19

[5]
Large language models in medicine.

Nat Med. 2023-8

[6]
Machine learning with routine electronic medical record data to identify people at high risk of disengagement from HIV care in Tanzania.

PLOS Glob Public Health. 2022-9-16

[7]
Achieving the 95 95 95 targets for all: A pathway to ending AIDS.

PLoS One. 2022

[8]
Applying machine learning and predictive modeling to retention and viral suppression in South African HIV treatment cohorts.

Sci Rep. 2022-7-26

[9]
Power of Big Data in ending HIV.

AIDS. 2021-5-1

[10]
Financial incentives to promote retention in care and viral suppression in adults with HIV initiating antiretroviral therapy in Tanzania: a three-arm randomised controlled trial.

Lancet HIV. 2020-9-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索