Roche Ellen, Singh Manisha, Mendez Keegan, Ayers Brian, Wang Sophie, Takahashi Atsushi, Teodorescu Debbie, Mill Jordi, Albors Carlos, Escher Andreas, Fan Yiling, Ozturk Caglar, Sheridan Eve, Rutherford Emma, Camara Oscar, Chakravarty Tarun
Massachusetts Institute of Technology.
Institute for Medical Engineering and Science, Massachusetts Institute of Technology.
Res Sq. 2025 May 8:rs.3.rs-6283242. doi: 10.21203/rs.3.rs-6283242/v1.
Atrial fibrillation (AF) poses significant clinical challenges due to the complex and variable geometry of the left atrial appendage (LAA), whose structure complicates the development of personalized interventions like LAA occlusion (LAAO) for stroke prevention Current reliance on animal models and cadavers for the assessment of left atrium (LA) and LAA to study AF-related disease and interventions raises reproducibility concerns, necessitating the development of high fidelity, physiologically relevant tools. To address this, we present a multimodal framework combining a soft robotic benchtop simulator, a lumped parameter model (LPM), and finite element analysis (FEA) to replicate LA function in sinus rhythm, atrial flutter, and AF. The system integrates 3D-printed, patient-specific LA geometries with soft robotic actuators to reproduce realistic wall motion and hemodynamics. A compact, magnetic resonance imaging (MRI)-compatible flow loop, driven by a soft robotic left ventricle (LV), eliminates bulky and non-physiological pulsatile pumps, allowing precise flow measurements and LAAO device testing under clinically relevant conditions. Complementary LPM and FEA models provide mechanistic insights, quantifying systemic hemodynamic changes and LA wall stress during disease and interventions. The models effectively replicate the clinical markers of atrial dysfunction and arrhythmia disorders, and their physiological accuracy is demonstrated through validation against human imaging and porcine models. The soft robotic LV's ability to drive the mock flow loop is validated in a hybrid synthetic-biological configuration within a swine circulatory system, where the soft robotic ventricle replaces native ventricular contraction to sustain systemic circulation. This scalable and versatile framework integrates experimental and computational techniques to advance cardiovascular biomechanics, supporting device development, clinical research/training, and personalized AF treatment to improve patient outcomes.
由于左心耳(LAA)复杂多变的几何结构,心房颤动(AF)带来了重大的临床挑战,其结构使诸如用于预防中风的左心耳封堵术(LAAO)等个性化干预措施的开展变得复杂。目前依靠动物模型和尸体来评估左心房(LA)和LAA以研究房颤相关疾病和干预措施引发了对可重复性的担忧,因此需要开发高保真、生理相关的工具。为解决这一问题,我们提出了一个多模态框架,该框架结合了软机器人台式模拟器、集总参数模型(LPM)和有限元分析(FEA),以复制窦性心律、心房扑动和房颤时的左心房功能。该系统将3D打印的、患者特异性的左心房几何结构与软机器人致动器相结合,以再现逼真的壁运动和血流动力学。一个由软机器人左心室(LV)驱动的紧凑的、与磁共振成像(MRI)兼容的血流回路,消除了笨重且非生理性的脉动泵,允许在临床相关条件下进行精确的流量测量和LAAO装置测试。互补的LPM和FEA模型提供了机制性见解,量化了疾病和干预过程中的全身血流动力学变化和左心房壁应力。这些模型有效地复制了心房功能障碍和心律失常疾病的临床标志物,并且通过与人体成像和猪模型的验证证明了它们的生理准确性。软机器人左心室驱动模拟血流回路的能力在猪循环系统内的混合合成生物配置中得到了验证,其中软机器人心室取代了天然心室收缩以维持全身循环。这个可扩展且通用的框架整合了实验和计算技术,以推进心血管生物力学,支持设备开发、临床研究/培训以及个性化房颤治疗,从而改善患者预后。