Liu Ya-Hui, Yan Yun-Wei, Wei Shu-Fan, Wang Wen-Juan, Zeng Hong-Ji, Wang Rui, Tian Qing-Feng
College of Public Health, Zhengzhou University, Zhengzhou, China.
Department of Public Health, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
J Gastrointest Oncol. 2025 Apr 30;16(2):615-627. doi: 10.21037/jgo-24-806. Epub 2025 Apr 27.
Given the rising incidence of hepatocellular carcinoma (HCC) globally, especially in China, information about independent risk factors for survival and disease prognosis of the illness is scarce. In the field of HCC research, there is an urgent need for a scientific basis to enhance the accuracy of clinical diagnosis, optimize the course of therapy, and accurately predict the prognosis. Against this backdrop, the objective of this work was to develop a scientific, efficient, and methodical nomogram to forecast the survival prognosis of HCC.
A real-world study collected clinical data from January 1, 2011, to December 31, 2019, for individuals with HCC. Overall survival (OS) was determined using Kaplan-Meier analysis. Independent risk variables were identified using Cox proportional hazards regression. A nomogram predicting 1-, 3-, and 5-year OS was created. The reliability of the predictions of the model was assessed using receiver operating characteristic (ROC), calibration, and decision curve analysis (DCA).
Data from 1,128 HCC cases showed 1-, 3-, and 5-year OS rates were 86.3%, 65.3%, and 43.1%, respectively. Univariate Cox regression identified 13 variables influencing HCC survival including age, HCC screening status, hepatitis C virus (HCV) status, nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) status, liver cirrhosis, elevated alpha-fetoprotein (AFP), Child-Pugh grade, tumor size, tumor number, treatment method, tumor thrombus, and extrahepatic metastasis (P<0.05). Multivariate analysis confirmed HCC screening status, tumor size, ALD, Child-Pugh classification, and therapy method as independent prognostic factors (P<0.05). The nomogram achieved an area under the ROC curve (AUC) of 0.868. Calibration curves of the 1-, 3-, and 5-year survival times and the DCA curve confirmed its predictive accuracy.
Patients without HCC screening, tumor size >5 cm, ALD, Child-Pugh grade C, and conservative treatment had a poor survival prognosis. A nomogram based on these risk variables provides a reliable tool for predicting the survival chances of patients with HCC.
鉴于全球肝细胞癌(HCC)发病率不断上升,尤其是在中国,关于该疾病生存和疾病预后的独立危险因素的信息匮乏。在HCC研究领域,迫切需要一个科学依据来提高临床诊断的准确性、优化治疗过程并准确预测预后。在此背景下,本研究的目的是开发一种科学、高效且系统的列线图来预测HCC的生存预后。
一项真实世界研究收集了2011年1月1日至2019年12月31日期间HCC患者的临床数据。采用Kaplan-Meier分析确定总生存期(OS)。使用Cox比例风险回归识别独立风险变量。创建了一个预测1年、3年和5年OS的列线图。使用受试者工作特征(ROC)、校准和决策曲线分析(DCA)评估模型预测的可靠性。
1128例HCC病例的数据显示,1年、3年和5年OS率分别为86.3%、65.3%和43.1%。单因素Cox回归确定了13个影响HCC生存的变量,包括年龄、HCC筛查状态、丙型肝炎病毒(HCV)状态、非酒精性脂肪性肝病(NAFLD)和酒精性肝病(ALD)状态、肝硬化、甲胎蛋白(AFP)升高、Child-Pugh分级、肿瘤大小、肿瘤数量、治疗方法、肿瘤血栓和肝外转移(P<0.05)。多因素分析证实HCC筛查状态、肿瘤大小、ALD、Child-Pugh分级和治疗方法为独立预后因素(P<0.05)列线图的ROC曲线下面积(AUC)为0.868。1年、3年和5年生存时间的校准曲线以及DCA曲线证实了其预测准确性。
未进行HCC筛查、肿瘤大小>5cm、ALD、Child-Pugh C级和采用保守治疗的患者生存预后较差。基于这些风险变量的列线图为预测HCC患者的生存机会提供了一个可靠的工具。