Thompson Hannah R, Ricks-Oddie Joni Ladawn, Schneider Margaret, Day Sophia, Argenio Kira, Konty Kevin, Radom-Aizik Shlomit, Guo Yawen, Cooper Dan M
Department of Community Health Science, School of Public Health, University of California Berkeley, California, USA.
Center for Statistical Consulting, Department of Statistics, University of California Irvine, Irvine, California, USA.
J Sch Health. 2025 Jul;95(7):498-509. doi: 10.1111/josh.70021. Epub 2025 May 19.
BACKGROUND: Data missingness can bias interpretation and outcomes resulting from data use. We describe data missingness in the longest-standing US-based youth fitness surveillance system (2006/07-2019/20). METHODS: This observational study uses the New York City FITNESSGRAM (NYCFG) database from 1,983,629 unique 4th-12th grade students (9,147,873 student-year observations) from 1756 schools. NYCFG tests for aerobic capacity, muscular strength, and endurance were administered annually. Mixed effects models determined the prevalence of missingness by demographics, and associations between demographics and missingness. RESULTS: Across years, 20.1% of students were missing data from all three tests (11.7% for elementary students, 15.6% middle, and 36.3% high). Missingness did not differ by sex, but differed significantly by race/ethnicity and student home neighborhood socioeconomic status. CONCLUSION: The nation's largest youth fitness surveillance system demonstrates the highest fitness data missingness among high school students, with more than 1/3 of students missing data. Non-Hispanic Black students and those with very poor home neighborhood SES, across all grade levels, have the highest odds of missing data. IMPLICATIONS FOR SCHOOL HEALTH: Strategies to better understand and ameliorate the causes of school-based fitness testing data missingness will increase overall data quality and begin to address health inequities in this critical metric of youth health.
背景:数据缺失可能会使数据使用所产生的解释和结果出现偏差。我们描述了美国历史最悠久的青少年体能监测系统(2006/07 - 2019/20)中的数据缺失情况。 方法:这项观察性研究使用了纽约市体能测试(NYCFG)数据库,该数据库来自1756所学校的1983629名4至12年级的学生(9147873个学生年度观察数据)。NYCFG每年都会进行有氧能力、肌肉力量和耐力测试。混合效应模型确定了按人口统计学特征划分的缺失率,以及人口统计学特征与缺失率之间的关联。 结果:多年来,20.1%的学生三项测试数据均缺失(小学生为11.7%,初中生为15.6%,高中生为36.3%)。缺失率在性别上无差异,但在种族/族裔和学生家庭所在社区的社会经济地位方面存在显著差异。 结论:美国最大的青少年体能监测系统显示,高中生的体能数据缺失率最高,超过三分之一的学生数据缺失。所有年级的非西班牙裔黑人学生以及家庭所在社区社会经济地位极差的学生,数据缺失的几率最高。 对学校健康的启示:更好地理解和改善基于学校的体能测试数据缺失原因的策略,将提高整体数据质量,并开始解决这一青少年健康关键指标中的健康不平等问题。
Cochrane Database Syst Rev. 2021-9-23
Cochrane Database Syst Rev. 2017-11-29
Cochrane Database Syst Rev. 2024-12-12
Cochrane Database Syst Rev. 2016-3-31
Cochrane Database Syst Rev. 2022-1-17
Cochrane Database Syst Rev. 2013-2-28
Cochrane Database Syst Rev. 2013-4-30
BMC Public Health. 2023-2-16
Am J Epidemiol. 2023-2-24
J Clin Epidemiol. 2022-11