Brožková Hana, Weisová Julie, Hlaváček Antonín
Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.
Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.
Langmuir. 2025 Jun 3;41(21):13126-13133. doi: 10.1021/acs.langmuir.5c00769. Epub 2025 May 19.
The surface chemistry of nanomaterials, particularly the density of functional groups, governs their behavior in applications such as bioanalysis, bioimaging, and environmental impact studies. Here, we report a precise method to quantify carboxyl groups per nanoparticle by combining anisotropically collapsing agarose gels for nanoparticle immobilization with fluorescence microscopy and acid-base titration. We applied this approach to photon-upconversion nanoparticles (UCNPs) coated with poly(acrylic acid) (PAA) and fluorescence-labeled polystyrene nanoparticles (PNs), which serve as models for bioimaging and environmental pollutants, respectively. UCNPs exhibited 152 ± 14 thousand carboxyl groups per particle (∼11 groups/nm), while PNs were characterized with 38 ± 3.6 thousand groups (∼1.7 groups/nm). The limit of detection was 6.4 and 1.9 thousand carboxyl groups per nanoparticle, and the limit of quantification was determined at 21 and 6.2 thousand carboxyl groups per nanoparticle for UCNP-PAAs and PNs, respectively. High intrinsic luminescence enabled direct imaging of UCNPs, while PNs required fluorescence staining with Nile Red to overcome low signal-to-noise ratios. The study also discussed the critical influence of nanoparticle concentration and titration conditions on the assay performance. This method advances the precise characterization of surface chemistry, offering insights into nanoparticle structure that extend beyond the resolution of electron microscopy. Our findings establish a robust platform for investigating the interplay of surface chemistry with nanoparticle function and fate in technological and environmental contexts, with broad applicability across nanomaterials.
纳米材料的表面化学,尤其是官能团的密度,决定了它们在生物分析、生物成像和环境影响研究等应用中的行为。在此,我们报告了一种精确的方法,通过将用于固定纳米颗粒的各向异性塌陷琼脂糖凝胶与荧光显微镜和酸碱滴定相结合,来定量每个纳米颗粒上的羧基。我们将这种方法应用于涂覆有聚丙烯酸(PAA)的光子上转换纳米颗粒(UCNP)和荧光标记的聚苯乙烯纳米颗粒(PN),它们分别作为生物成像和环境污染物的模型。UCNP每个颗粒显示出152±14千个羧基(约11个基团/纳米),而PN的特征是有38±3.6千个基团(约1.7个基团/纳米)。检测限分别为每个纳米颗粒6.4和1.9千个羧基,UCNP-PAA和PN的定量限分别确定为每个纳米颗粒21和6.2千个羧基。高本征发光使得能够直接对UCNP进行成像,而PN则需要用尼罗红进行荧光染色以克服低信噪比。该研究还讨论了纳米颗粒浓度和滴定条件对分析性能的关键影响。这种方法推进了表面化学的精确表征,提供了超越电子显微镜分辨率的纳米颗粒结构见解。我们的研究结果建立了一个强大的平台,用于研究表面化学与纳米颗粒在技术和环境背景下的功能及命运之间的相互作用,对各种纳米材料具有广泛的适用性。
J Am Chem Soc. 2005-10-12
Anal Chem. 2024-6-4
Chem Rev. 2024-5-8
Front Bioeng Biotechnol. 2023-7-24
ACS Environ Au. 2021-9-10
ACS Environ Au. 2022-11-16