Keles Elif, Ali Syed Yaseen, Wintermark Pia, Annaert Pieter, Groenendaal Floris, Şahin Suzan, Öncel Mehmet Yekta, Armangil Didem, Koc Esin, Battin Malcolm R, Gunn Alistair J, Frymoyer Adam, Chock Valerie, Mekahli Djalila, van den Anker John, Smits Anne, Allegaert Karel, Bagci Ulas
Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 N. Michigan Avenue, Suite 1600, Chicago, IL, 60611, USA.
Division of Newborn Medicine, Department of Pediatrics, Montreal Children's Hospital, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.
Sci Rep. 2025 May 19;15(1):17278. doi: 10.1038/s41598-025-01141-9.
Therapeutic hypothermia (TH) significantly reduces mortality and morbidities in neonates with Neonatal Encephalopathy (NE). NE may result in neonatal death and multisystem organ impairment, including acute kidney injury (AKI). Our study aimed to utilize machine learning (ML) methods to predict the outcome of TH-treated NE neonates developing AKI and death during TH. In this retrospective multinational study, 1149 TH-treated NE neonates and 801 controls were included. AKI was classified using KDIGO neonatal criteria based on serum creatinine measurements. The ML model incorporated gestational age, birth weight, postnatal age, and serum creatinine values. The algorithm used all these covariates to predict one of five outcomes: survival with/without AKI, mortality with/without AKI, and hospitalized non-NE controls. The XGBoost model achieved an AUC of 95% and an accuracy of 75.08% in predicting AKI and survival, surpassing other ML classifiers that demonstrated accuracy levels ranging from 54% to 65%. To our knowledge this is the first ML model trained on multicenter, multinational data specifically aimed at predicting neonates' AKI, death, and survival within the first three days. Our ML scoring systems' code and user interface are freely available ( https://github.com/NUBagciLab/Therapeutic-Hypothermia-Outcome-Classification , https://thprediction.streamlit.app/ ). This tool has potential to support neonatologists to personalize therapies, and to optimize pharmacotherapy for renally cleared drugs.
治疗性低温(TH)可显著降低新生儿脑病(NE)患儿的死亡率和发病率。NE可能导致新生儿死亡和多系统器官损害,包括急性肾损伤(AKI)。我们的研究旨在利用机器学习(ML)方法预测接受TH治疗的NE新生儿在TH期间发生AKI和死亡的结局。在这项回顾性多国研究中,纳入了1149例接受TH治疗的NE新生儿和801例对照。根据血清肌酐测量结果,使用KDIGO新生儿标准对AKI进行分类。ML模型纳入了胎龄、出生体重、出生后年龄和血清肌酐值。该算法使用所有这些协变量来预测五种结局之一:伴有/不伴有AKI的存活、伴有/不伴有AKI的死亡以及住院的非NE对照。XGBoost模型在预测AKI和存活方面的曲线下面积(AUC)达到95%,准确率为75.08%,超过了其他ML分类器,后者的准确率在54%至65%之间。据我们所知,这是第一个基于多中心、多国数据训练的ML模型,专门用于预测新生儿在头三天内的AKI、死亡和存活情况。我们的ML评分系统的代码和用户界面可免费获取(https://github.com/NUBagciLab/Therapeutic-Hypothermia-Outcome-Classification,https://thprediction.streamlit.app/)。该工具有可能支持新生儿科医生进行个性化治疗,并优化经肾脏清除药物的药物治疗。